
Миниатюрного робота научили эффективно перемещаться в трубах с водой
Исследователи из Института интеллектуальных систем Макса Планка, Харбинского технологического института и Гонконгского университета науки и технологий создали нового беспроводного миниатюрного робота. Миллиробот, как его прозвали за соответствующие маштабы, оснащён потоковым приводом и умеет протискиваться в загогулинах из трубок с проточной водой.
Миллиробота описали в журнале Science Robotics («Научная робототехника»). Предполагается, что такие устройства помогут эффективно справляться с техобслуживанием без необходимости вскрывать трубы.
Соавтор научной статьи Вэньци Ху объяснил, что беспроводные роботы миллиметрового масштаба, способные перемещаться в трубопроводах с жидкостью, обладают большим потенциалом для инспектирования, технического обслуживания или ремонта на ядерных объектах, в промышленности и медицине.
Однако до сих пор возможности такой техники существенно ограничивала зависимость от внешних источников питания. Решить проблему не раз пытались и другие робототехники. Но многие из предложенных ранее беспроводных образцов были недостаточно миниатюрными, могли функционировать недолго и обладали куцым функционалом. Вот почему Ху и сотоварищи затеяли создание беспроводного робота, чьи габариты ограничивались бы несколькими миллиметрами. Конструкция должна была включать в себя внутренний источник питания и исполнительный блок, использующий заряд рационально, то есть контролируемым образом.
Последняя принципиально важная особенность при испытаниях готового образца позволила ему преодолевать сравнительно большие расстояния внутри трубчатых конструкций и подолгу выполнять задачи по техобслуживанию.
Вэньци Ху рассказал, что крошечный труболаз включает в себя три ключевых компонента: модуль управления потоком для использования силы текущей жидкости, миниатюрный редуктор с двумя выходами для передачи преобразованной механической энергии в систему передвижения робота и мягкие адаптивные колёса для перемещений по изгибам труб.
Предлагаемая концепция миллиробота с поточным приводом обеспечивает управляемую навигацию на большие расстояния по течению и против него в трубопроводах сложной конструкции.
Колёсный робот имеет внутреннюю крыльчатку, то есть приводной ротор, ещё известный как лопаточная машина или импеллер. Его пример иного масштаба и из другого материала для наглядности показан на фото ниже.

Крыльчатка преобразует поток жидкостей внутри труб в механическую энергию. Более того, направление, в котором движется миллиробот, можно регулировать простым прикладыванием внешнего магнита.
Сила трения колёсиков обеспечивает сопротивление потоку жидкости. Но конструкторы предвидят трудности при скорости потока более 1 м/с или при низком коэффициенте трения внутренних стенок, например, внутри нефтепроводов. Для стабильного передвижения по таким трубам робота можно выполнить в более обтекаемом корпусе либо сделать колёса более шероховатыми, полагают изобретатели.
Кроме того, управление миллироботом ограничено расстоянием от внешних магнитов. Чтобы решить эту проблему, будущие роботы придётся оснастить встроенными миниатюрными батареями и приводами из сплавов с памятью формы. А также понадобятся микроприводы и система связи для дистанционного управления на больших расстояниях от оператора.
Миллиробота описали в журнале Science Robotics («Научная робототехника»). Предполагается, что такие устройства помогут эффективно справляться с техобслуживанием без необходимости вскрывать трубы.
Соавтор научной статьи Вэньци Ху объяснил, что беспроводные роботы миллиметрового масштаба, способные перемещаться в трубопроводах с жидкостью, обладают большим потенциалом для инспектирования, технического обслуживания или ремонта на ядерных объектах, в промышленности и медицине.
Однако до сих пор возможности такой техники существенно ограничивала зависимость от внешних источников питания. Решить проблему не раз пытались и другие робототехники. Но многие из предложенных ранее беспроводных образцов были недостаточно миниатюрными, могли функционировать недолго и обладали куцым функционалом. Вот почему Ху и сотоварищи затеяли создание беспроводного робота, чьи габариты ограничивались бы несколькими миллиметрами. Конструкция должна была включать в себя внутренний источник питания и исполнительный блок, использующий заряд рационально, то есть контролируемым образом.
Последняя принципиально важная особенность при испытаниях готового образца позволила ему преодолевать сравнительно большие расстояния внутри трубчатых конструкций и подолгу выполнять задачи по техобслуживанию.
Вэньци Ху рассказал, что крошечный труболаз включает в себя три ключевых компонента: модуль управления потоком для использования силы текущей жидкости, миниатюрный редуктор с двумя выходами для передачи преобразованной механической энергии в систему передвижения робота и мягкие адаптивные колёса для перемещений по изгибам труб.
Предлагаемая концепция миллиробота с поточным приводом обеспечивает управляемую навигацию на большие расстояния по течению и против него в трубопроводах сложной конструкции.
Колёсный робот имеет внутреннюю крыльчатку, то есть приводной ротор, ещё известный как лопаточная машина или импеллер. Его пример иного масштаба и из другого материала для наглядности показан на фото ниже.

Крыльчатка преобразует поток жидкостей внутри труб в механическую энергию. Более того, направление, в котором движется миллиробот, можно регулировать простым прикладыванием внешнего магнита.
Сила трения колёсиков обеспечивает сопротивление потоку жидкости. Но конструкторы предвидят трудности при скорости потока более 1 м/с или при низком коэффициенте трения внутренних стенок, например, внутри нефтепроводов. Для стабильного передвижения по таким трубам робота можно выполнить в более обтекаемом корпусе либо сделать колёса более шероховатыми, полагают изобретатели.
Кроме того, управление миллироботом ограничено расстоянием от внешних магнитов. Чтобы решить эту проблему, будущие роботы придётся оснастить встроенными миниатюрными батареями и приводами из сплавов с памятью формы. А также понадобятся микроприводы и система связи для дистанционного управления на больших расстояниях от оператора.
- Дмитрий Ладыгин
- youtu.be/r9qGQuxXwLM
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

NASA объявило: Найдены самые убедительные доказательства существования жизни на Марсе
Ученые тем временем выясняют, как могли выглядеть древние жители Красной планеты...

16-тонный саркофаг, заполненный сокровищами, может подтвердить одну из самых таинственных и кровавых легенд древнего Китая
Какой секрет хранила эта гробница, что оставалась единственной нетронутой два тысячелетия?...

Ученый утверждает: у него есть доказательства, что мы живем в матрице
По словам Мелвина Вопсона, подсказки он нашел в ДНК, расширении Вселенной и фундаментальных законах физики...

Новая операция по объединению людей и животных может подарить… вечную жизнь
Медики признаются: уже сейчас можно сделать новое тело человека. Но один орган пока не поддается науке...

Выяснилось, что полное восстановление озонового слоя закончится глобальной катастрофой
Как так вышло, что в борьбе за экологию человечество сделало себе еще хуже?...

Оказывается, решение проблемы выбоин на дорогах существует уже почти 100 лет
Почему технология, забытая полвека назад, возвращается и становится очень популярной?...

Разгадка феномена «копченых» мумий может переписать древнейшую историю человечества
Поразительно: этот погребальный обычай, возможно, используют уже 42 000 лет подряд!...

Не украли, а «присвоили»: историки выяснили, как и откуда семья Марко Поло раздобыла главный символ Венеции
Данные, полученные из «ДНК» льва святого Марка, помогли распутать детектив длиной в 700 лет...

Каждый год, как расписанию, на Марсе образуется странное облако
Долгое время ученые не могли разгадать эту аномалию, но теперь ответ наконец-то найден!...