Мягкие материалы можно скреплять одним лишь электричеством
Есть ли способ склеивать твёрдые и мягкие материалы без использования вспомогательных средств или веществ, например, скотча, клея или эпоксидной смолы? Новое исследование, опубликованное в издании ACS Central Science, показало: при подаче небольшого напряжения на определённые объекты образуются химические связи, которые надёжно соединяют предметы. Затем изменение направления потока электронов на противоположное легко разделяло два материала.
Клей скрепляет вещи благодаря механическим либо электростатическим силам, причём накрепко и практически неотвратимо для поверхностей. А если это соединение нужно прекратить, отменить? Вот почему в качестве альтернативы исследователи рассмотрели обратимые методы склеивания, включая электроадгезию (ЭА), то есть прилипание под воздействием электротока.
Впрочем, термин используют для описания нескольких разных явлений. Одно из них — пропускание электротока через два материала, что склеивает их благодаря притяжению или химическим связям. Ранее профессор химии из Университета Мэриленда Шриниваса Рагхаван с коллегами доказали, что ЭА может скреплять мягкие материалы с противоположными зарядами и даже пригодно для простых конструкций. При очередном своём исследовании учёные хотели посмотреть, может ли ЭА обратимо (на время) связывать твёрдый графит с мягкими материалами в виде биологических тканей.
Научный коллектив сначала испытал, как работает ЭА на двух графитовых электродах и кусочке акриламидного геля, то есть растворимого в воде вещества, обычного используемого для производства полимеров. Небольшое напряжение в 5 вольт подавали в течение нескольких минут, и гель надолго прилипал к аноду, то есть к электроду со значением «+». Возникшая химическая связь была очень прочной: когда учёные попытались разъединить склейку, гель порвался раньше, чем отстал от электрода.
А когда направление тока менялось на противоположное, графит и гель легко отделялись друг от друга. Наоборот, гель прилипал к другому электроду, который становился «плюсовым». Аналогичные тесты проводили на всевозможных материалах: металлах, различных видах гелей, мясе разных животных, фруктах и овощах. Такое разнообразие понадобилось, чтобы доказать универсальность обнаруженного явления.
Изучая ЭА, авторы научного проекта увидели, что твёрдому материалу необходимо быть проводником электронов, а мягкому — иметь в составе ионы соли. Так возникло предположение, что адгезия (прилипание) возникает за счёт химических связей меж поверхностями при обмене электронами. Гипотеза объясняет провальные попытки. Так, не прилипал титан и некоторые другие слишком «цепкие» металлы, крепко удерживающие свои электроны. А ещё не прилипали виноград и ряд фруктов с преобладанием сахара над солями.
Один из опытов доказал, что ЭА склеивает предметы и в воде, что расширяет спектр использования открытия.
Изученный эффект перспективен для гибридной робототехники с биологическими составляющими, улучшения медицинских имплантатов, внедрения в создание аккумуляторов и так далее.
Клей скрепляет вещи благодаря механическим либо электростатическим силам, причём накрепко и практически неотвратимо для поверхностей. А если это соединение нужно прекратить, отменить? Вот почему в качестве альтернативы исследователи рассмотрели обратимые методы склеивания, включая электроадгезию (ЭА), то есть прилипание под воздействием электротока.
Впрочем, термин используют для описания нескольких разных явлений. Одно из них — пропускание электротока через два материала, что склеивает их благодаря притяжению или химическим связям. Ранее профессор химии из Университета Мэриленда Шриниваса Рагхаван с коллегами доказали, что ЭА может скреплять мягкие материалы с противоположными зарядами и даже пригодно для простых конструкций. При очередном своём исследовании учёные хотели посмотреть, может ли ЭА обратимо (на время) связывать твёрдый графит с мягкими материалами в виде биологических тканей.
Научный коллектив сначала испытал, как работает ЭА на двух графитовых электродах и кусочке акриламидного геля, то есть растворимого в воде вещества, обычного используемого для производства полимеров. Небольшое напряжение в 5 вольт подавали в течение нескольких минут, и гель надолго прилипал к аноду, то есть к электроду со значением «+». Возникшая химическая связь была очень прочной: когда учёные попытались разъединить склейку, гель порвался раньше, чем отстал от электрода.
А когда направление тока менялось на противоположное, графит и гель легко отделялись друг от друга. Наоборот, гель прилипал к другому электроду, который становился «плюсовым». Аналогичные тесты проводили на всевозможных материалах: металлах, различных видах гелей, мясе разных животных, фруктах и овощах. Такое разнообразие понадобилось, чтобы доказать универсальность обнаруженного явления.
Изучая ЭА, авторы научного проекта увидели, что твёрдому материалу необходимо быть проводником электронов, а мягкому — иметь в составе ионы соли. Так возникло предположение, что адгезия (прилипание) возникает за счёт химических связей меж поверхностями при обмене электронами. Гипотеза объясняет провальные попытки. Так, не прилипал титан и некоторые другие слишком «цепкие» металлы, крепко удерживающие свои электроны. А ещё не прилипали виноград и ряд фруктов с преобладанием сахара над солями.
Один из опытов доказал, что ЭА склеивает предметы и в воде, что расширяет спектр использования открытия.
Изученный эффект перспективен для гибридной робототехники с биологическими составляющими, улучшения медицинских имплантатов, внедрения в создание аккумуляторов и так далее.
- Дмитрий Ладыгин
- phys.org
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Как на ладони: Обнаружен морской гигант, который виден из космоса
Мегакоралл у Соломоновых островов оказался самым крупным животным Земли....
Спасти планету сможет… африканский червь
В Кении найдено насекомое с удивительными способностями....
«Орешник», «Бук» и «Тополь»: искусный нейминг от российских военных конструкторов
Наука как сбить Запад с толку....
Главная тайна Седьмой планеты разгадана через 38 лет
Уран оказался не таким уж странным, как думали ученые....
80 000 лет жизни: какие тайны скрывает самое древнее и большое существо на планете?
Залог невероятного долголетия и удивительного выживания обнаружили учёные....
Раскрыт секрет идеального женского тела?
Оказывается, дело вовсе не в соотношении талии и бедер....
Ученые раскрыли тайну сигнала, после которого началось самое мощное извержение в истории
Разгадка оказалась потрясающей во всех смыслах....
Саблезубый котёнок томился во льдах Якутии 35 тысяч лет
Благодаря находке стало известно, что сородичи пушистика обитали в столь холодных местах....
Ученая вылечила свой рак вирусами собственного производства
Если человек хочет жить — медицина бессильна....
Эти «красные монстры» вообще не должны существовать
Что узнали астрономы о трех невозможно огромных галактиках....
Почти бессмертные существа помогут человечеству покорить глубокий космос
Ученым, наконец, удалось «взломать» код поразительной живучести тихоходок....
Разгадано учеными: почему города разрушают сердце и разум
Причины, которые нашли исследователи, вас удивят....
Ещё один одинокий: в Балтийском море обнаружен дельфин, который может говорить только сам с собой
Совсем как старый вдовец, которого давно не навещали близкие....
Турбулентность отменяется! А пилоты-люди вообще будут не нужны
Искусственный интеллект может в корне изменить авиацию....
Надеялись на Беса: древние египтянки при беременности хлебали галлюциногенные смеси
Думали, что божок с двусмысленным для нас именем убережёт....
Большой мозг — не значит самый умный
Последнее исследование собак показало парадоксальные результаты....