Четвероногого робота обучили паркуру и ходьбе по руинам
Робот, получивший название ANYmal, без проблем справился с тестовыми прогулками по каменистой местности на туристических тропах в Швейцарии. Исследователи из Швейцарской высшей технической школы Цюриха (ETH Zurich) научили своего четвероногого робота некоторым новым навыкам: он оказался довольно ловок в паркуре.
Как известно, этот сравнительно новый вид атлетики славится эффектным преодолением препятствий в городской среде. ANYmal также умеет справляться с пересечённой местностью, которая обычно встречается на строительных площадках или в зонах стихийных бедствий.
Чтобы научить робопса новым навыкам, две команды инженеров под руководством одного и того профессора Марко Хаттера с кафедры механики и технологических процессов, продвигались к достижению разными путями.
В одной из групп трудится Никита Рудин, который лично увлекается паркуром в свободное время. Он сказал, что до начала проекта ряд его коллег полагали, что четвероногие роботы в своём развитии достигли предела. Но у искушённого в паркуре Рудина было другое мнение. Более того — уверенность, что роботов можно научить куда большему.
С помощью машинного обучения инженер научил робопса новым навыкам. Теперь тот может взбираться на препятствия и выполнять сложные манёвры, чтобы спрыгнуть с них.
В процессе робот учился подобно детям, то есть путём проб и ошибок. Теперь, когда на его пути есть преграда, он благодаря своей видеокамере и искусственной нейронной сети определяет, с каким именно препятствием столкнулся. Затем выполняет оптимальные движения, которые на основе накопленного им опыта с наибольшей вероятностью окончатся успехом.
Рудин также объяснил, что робот получил возможность выходить за рамки предопределённых задач и теперь преодолевает труднопроходимую местность, например, бетонные завалы.
Подготовить ту же модель ANYmal именно к таким хаотичным трудностям стало задачей другого научного проекта, над которым трудился коллега Рудина из ETH Фабиан Дженелтен. Он объединил ради этого возможности машинного обучение с испытанным подходом, известным как управление на основе моделей.
Так называют относительно простой способ научить робота распознавать углубления в кучах щебня и преодолевать их. А машинное обучение при этом помогает освоить схемы движений, которые робот затем может гибко, в динамическом диапазоне, совершать в непредсказуемых ситуациях.
В результате четвероногий робот теперь успешнее передвигается по скользким поверхностям или шатким валунам. Так учёные готовят мобильные устройства к работе в местах, опасных для человека. Например, на стройплощадках или после землетрясений.
Как известно, этот сравнительно новый вид атлетики славится эффектным преодолением препятствий в городской среде. ANYmal также умеет справляться с пересечённой местностью, которая обычно встречается на строительных площадках или в зонах стихийных бедствий.
Чтобы научить робопса новым навыкам, две команды инженеров под руководством одного и того профессора Марко Хаттера с кафедры механики и технологических процессов, продвигались к достижению разными путями.
В одной из групп трудится Никита Рудин, который лично увлекается паркуром в свободное время. Он сказал, что до начала проекта ряд его коллег полагали, что четвероногие роботы в своём развитии достигли предела. Но у искушённого в паркуре Рудина было другое мнение. Более того — уверенность, что роботов можно научить куда большему.
С помощью машинного обучения инженер научил робопса новым навыкам. Теперь тот может взбираться на препятствия и выполнять сложные манёвры, чтобы спрыгнуть с них.
В процессе робот учился подобно детям, то есть путём проб и ошибок. Теперь, когда на его пути есть преграда, он благодаря своей видеокамере и искусственной нейронной сети определяет, с каким именно препятствием столкнулся. Затем выполняет оптимальные движения, которые на основе накопленного им опыта с наибольшей вероятностью окончатся успехом.
Рудин также объяснил, что робот получил возможность выходить за рамки предопределённых задач и теперь преодолевает труднопроходимую местность, например, бетонные завалы.
Подготовить ту же модель ANYmal именно к таким хаотичным трудностям стало задачей другого научного проекта, над которым трудился коллега Рудина из ETH Фабиан Дженелтен. Он объединил ради этого возможности машинного обучение с испытанным подходом, известным как управление на основе моделей.
Так называют относительно простой способ научить робота распознавать углубления в кучах щебня и преодолевать их. А машинное обучение при этом помогает освоить схемы движений, которые робот затем может гибко, в динамическом диапазоне, совершать в непредсказуемых ситуациях.
Сочетание обоих подходов позволяет нам получать максимальную отдачу от любого робота
— Фабиан Дженелтен, ETH Zurich.
— Фабиан Дженелтен, ETH Zurich.
В результате четвероногий робот теперь успешнее передвигается по скользким поверхностям или шатким валунам. Так учёные готовят мобильные устройства к работе в местах, опасных для человека. Например, на стройплощадках или после землетрясений.
- Дмитрий Ладыгин
- youtu.be/REvNnUzVDAA
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Новое исследование показало: Стоунхендж столетиями «водил за нос». Похоже, историю опять придется переписывать
Оказалось, что сенсация скрывалась в огромном круге, состоящем из загадочных шахт...
Парадокс Великой Зеленой стены: Китай посадил 78 миллиардов новых деревьев, но климат стал только хуже. Как так вышло?
Ученые назвали причины, почему самый грандиозный экологический проект за всю историю в итоге обернулся головной болью для миллионов китайских граждан...
Людовик XIV умер совсем не от гангрены: ученые сумели раскрыть истину лишь 310 лет спустя
Эксперты говорят: французский король был обречен. Медикам того времени была совершенно неизвестна его болезнь...
Необъяснимые аномалии в тайге на Дальнем Востоке: читаем походные дневники военного разведчика и писателя Владимира Арсеньева
Часть первая: свет в ночном море, мираж «фата-моргана» и почти моментальное замерзание воды...
ЦРУ, море в пустыне и нефть: кто и зачем остановил проект Египта на 60 лет?
Часть вторая: Холодная война, 200 ядерных взрывов и 15 миллиардов, которые могут все изменить...
Меньше трех дней до конца света на орбите: почему программа CRASH Clock бьет тревогу?
Сотрудники Маска уверяют, что у них все под контролем. Но эксперты сравнивают орбиту с карточным домиком. Кто же прав?...
Что стоит за таинственными аномалиями в дальневосточной тайге? Продолжаем читать походные дневники военного разведчика и писателя Владимира Арсеньева
Часть вторая: снежная гроза, феномен моретрясения и встреча со «снежным человеком»...
Темная сторона Рима: выяснилось, что Империя веками «выкачивала» здоровье из покоренных народов
Новые находки заставили ученых признать: для простых людей римский «прогресс» был скорее приговором, чем спасением. Но почему же так вышло?...
Встречи с неведомым: завершаем чтение дневников разведчика и писателя Владимира Арсеньева
Часть третья: таинственный огонь в лесу, свет из облаков, призрак в тумане и странный дым на море...
Загадочная письменность Б из пещер у Мертвого моря наконец-то расшифрована
Ученые «ломали» древний шифр эпохи Христа более 70 лет, но результат разочаровал многих. Почему?...
Первая «чернокожая британка» оказалась белой: новое исследование заставило историков полностью пересмотреть портрет женщины из Бичи-Хед
Почему ученые так сильно ошиблись с ее внешностью? И стоит ли после этого доверять реконструкциям по ДНК?...
Марс отменяется: три причины, почему российские эксперты ставят крест на Красной планете
Почему пробирка с Марса опаснее любого астероида, как галактические лучи «взрывают» мозг и при чем тут Китай? Честный разбор рисков от Российской академии наук...