Четвероногого робота обучили паркуру и ходьбе по руинам
Робот, получивший название ANYmal, без проблем справился с тестовыми прогулками по каменистой местности на туристических тропах в Швейцарии. Исследователи из Швейцарской высшей технической школы Цюриха (ETH Zurich) научили своего четвероногого робота некоторым новым навыкам: он оказался довольно ловок в паркуре.
Как известно, этот сравнительно новый вид атлетики славится эффектным преодолением препятствий в городской среде. ANYmal также умеет справляться с пересечённой местностью, которая обычно встречается на строительных площадках или в зонах стихийных бедствий.
Чтобы научить робопса новым навыкам, две команды инженеров под руководством одного и того профессора Марко Хаттера с кафедры механики и технологических процессов, продвигались к достижению разными путями.
В одной из групп трудится Никита Рудин, который лично увлекается паркуром в свободное время. Он сказал, что до начала проекта ряд его коллег полагали, что четвероногие роботы в своём развитии достигли предела. Но у искушённого в паркуре Рудина было другое мнение. Более того — уверенность, что роботов можно научить куда большему.
С помощью машинного обучения инженер научил робопса новым навыкам. Теперь тот может взбираться на препятствия и выполнять сложные манёвры, чтобы спрыгнуть с них.
В процессе робот учился подобно детям, то есть путём проб и ошибок. Теперь, когда на его пути есть преграда, он благодаря своей видеокамере и искусственной нейронной сети определяет, с каким именно препятствием столкнулся. Затем выполняет оптимальные движения, которые на основе накопленного им опыта с наибольшей вероятностью окончатся успехом.
Рудин также объяснил, что робот получил возможность выходить за рамки предопределённых задач и теперь преодолевает труднопроходимую местность, например, бетонные завалы.
Подготовить ту же модель ANYmal именно к таким хаотичным трудностям стало задачей другого научного проекта, над которым трудился коллега Рудина из ETH Фабиан Дженелтен. Он объединил ради этого возможности машинного обучение с испытанным подходом, известным как управление на основе моделей.
Так называют относительно простой способ научить робота распознавать углубления в кучах щебня и преодолевать их. А машинное обучение при этом помогает освоить схемы движений, которые робот затем может гибко, в динамическом диапазоне, совершать в непредсказуемых ситуациях.
В результате четвероногий робот теперь успешнее передвигается по скользким поверхностям или шатким валунам. Так учёные готовят мобильные устройства к работе в местах, опасных для человека. Например, на стройплощадках или после землетрясений.
Как известно, этот сравнительно новый вид атлетики славится эффектным преодолением препятствий в городской среде. ANYmal также умеет справляться с пересечённой местностью, которая обычно встречается на строительных площадках или в зонах стихийных бедствий.
Чтобы научить робопса новым навыкам, две команды инженеров под руководством одного и того профессора Марко Хаттера с кафедры механики и технологических процессов, продвигались к достижению разными путями.
В одной из групп трудится Никита Рудин, который лично увлекается паркуром в свободное время. Он сказал, что до начала проекта ряд его коллег полагали, что четвероногие роботы в своём развитии достигли предела. Но у искушённого в паркуре Рудина было другое мнение. Более того — уверенность, что роботов можно научить куда большему.
С помощью машинного обучения инженер научил робопса новым навыкам. Теперь тот может взбираться на препятствия и выполнять сложные манёвры, чтобы спрыгнуть с них.
В процессе робот учился подобно детям, то есть путём проб и ошибок. Теперь, когда на его пути есть преграда, он благодаря своей видеокамере и искусственной нейронной сети определяет, с каким именно препятствием столкнулся. Затем выполняет оптимальные движения, которые на основе накопленного им опыта с наибольшей вероятностью окончатся успехом.
Рудин также объяснил, что робот получил возможность выходить за рамки предопределённых задач и теперь преодолевает труднопроходимую местность, например, бетонные завалы.
Подготовить ту же модель ANYmal именно к таким хаотичным трудностям стало задачей другого научного проекта, над которым трудился коллега Рудина из ETH Фабиан Дженелтен. Он объединил ради этого возможности машинного обучение с испытанным подходом, известным как управление на основе моделей.
Так называют относительно простой способ научить робота распознавать углубления в кучах щебня и преодолевать их. А машинное обучение при этом помогает освоить схемы движений, которые робот затем может гибко, в динамическом диапазоне, совершать в непредсказуемых ситуациях.
Сочетание обоих подходов позволяет нам получать максимальную отдачу от любого робота
— Фабиан Дженелтен, ETH Zurich.
— Фабиан Дженелтен, ETH Zurich.
В результате четвероногий робот теперь успешнее передвигается по скользким поверхностям или шатким валунам. Так учёные готовят мобильные устройства к работе в местах, опасных для человека. Например, на стройплощадках или после землетрясений.
- Дмитрий Ладыгин
- youtu.be/REvNnUzVDAA
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Тайна необъяснимых северных кратеров разгадана спустя 11 лет после появления первого провала на Ямале
Почему российские ученые не рады своему открытию, называя его «русской рулеткой»?...
Турецкие археологи обнаружили затерянный мост, способный переписать всю раннюю историю человечества
Оказалось, что научная сенсация все это время... валялась у ученых буквально под ногами...
Секретная база в Гренландии, спрятанная 30-метровым слоем льда, угрожает всему миру
Гляциолог Уильям Колган говорит: «Американские военные думали, что это никогда не вскроется, но теперь...»...
В Антарктиде обнаружен метановый «спящий гигант», который очень быстро просыпается. И это плохая новость
Ученые в тревоге задаются вопросом: означают ли десятки газовых гейзеров под водой, что эффект домино уже запущен?...
Рядом с пирамидами Гизы обнаружены секретные тоннели, ведущие в забытый подземный мир
Быть может, их построили даже не египтяне. Но кто тогда?...
В самом большом кратере Луны происходит что-то очень странное
Поэтому астронавты планируют туда заглянуть в самое ближайшее время...
Наше тело — это… большой мозг: эксперимент русского ученого может совершить революцию в медицине
Эксперты говорят: «Открытие клеточной памяти — это огромный шаг к медицине, где лечение будет подбираться точно для конкретного человека»...
Археологи поражены: 404 тысячи лет назад «римляне» спокойно разделали гигантского слона... 3-сантиметровыми ножичками
Получается, что древние охотники могли справиться с самым большим животным в Европе буквально голыми руками?...
«Черный ящик» раскрыл тайну летучей мыши, пожирающей птиц прямо в полете
Ученые совершенно не ожидали, что рукокрылый властелин ночного неба по свирепости и охотничьему мастерству даст фору даже соколам...
Ученые выяснили: в каком возрасте наш мозг достигает пика своей активности
Почему же 20-30 лет оказались стереотипом, далеким от реальной жизни?...
Ученые обнаружили на Кавказе «ужасного» хищника, способного дробить черепа с одного укуса
Почему же 400-килограммовый монстр, побеждавший медведей и саблезубых тигров, все-таки исчез с лица планеты?...
Мог ли великий художник Клод Моне видеть в ультрафиолетовом спектре, как пчела?
Историки уверены: после операции на глазах с французским живописцем стали происходит очень странные вещи...
Как мадагаскарские лемуры ускоряют покорение космоса?
И почему именно эти животные оказались самые ценными для будущего всего человечества?...
Секретные спутники Илона Маска заподозрили в использовании запрещенных сигналов
Что это значит для России и чем могут ответить наши военные?...