
Четвероногого робота обучили паркуру и ходьбе по руинам
Робот, получивший название ANYmal, без проблем справился с тестовыми прогулками по каменистой местности на туристических тропах в Швейцарии. Исследователи из Швейцарской высшей технической школы Цюриха (ETH Zurich) научили своего четвероногого робота некоторым новым навыкам: он оказался довольно ловок в паркуре.
Как известно, этот сравнительно новый вид атлетики славится эффектным преодолением препятствий в городской среде. ANYmal также умеет справляться с пересечённой местностью, которая обычно встречается на строительных площадках или в зонах стихийных бедствий.
Чтобы научить робопса новым навыкам, две команды инженеров под руководством одного и того профессора Марко Хаттера с кафедры механики и технологических процессов, продвигались к достижению разными путями.
В одной из групп трудится Никита Рудин, который лично увлекается паркуром в свободное время. Он сказал, что до начала проекта ряд его коллег полагали, что четвероногие роботы в своём развитии достигли предела. Но у искушённого в паркуре Рудина было другое мнение. Более того — уверенность, что роботов можно научить куда большему.
С помощью машинного обучения инженер научил робопса новым навыкам. Теперь тот может взбираться на препятствия и выполнять сложные манёвры, чтобы спрыгнуть с них.
В процессе робот учился подобно детям, то есть путём проб и ошибок. Теперь, когда на его пути есть преграда, он благодаря своей видеокамере и искусственной нейронной сети определяет, с каким именно препятствием столкнулся. Затем выполняет оптимальные движения, которые на основе накопленного им опыта с наибольшей вероятностью окончатся успехом.
Рудин также объяснил, что робот получил возможность выходить за рамки предопределённых задач и теперь преодолевает труднопроходимую местность, например, бетонные завалы.
Подготовить ту же модель ANYmal именно к таким хаотичным трудностям стало задачей другого научного проекта, над которым трудился коллега Рудина из ETH Фабиан Дженелтен. Он объединил ради этого возможности машинного обучение с испытанным подходом, известным как управление на основе моделей.
Так называют относительно простой способ научить робота распознавать углубления в кучах щебня и преодолевать их. А машинное обучение при этом помогает освоить схемы движений, которые робот затем может гибко, в динамическом диапазоне, совершать в непредсказуемых ситуациях.
В результате четвероногий робот теперь успешнее передвигается по скользким поверхностям или шатким валунам. Так учёные готовят мобильные устройства к работе в местах, опасных для человека. Например, на стройплощадках или после землетрясений.
Как известно, этот сравнительно новый вид атлетики славится эффектным преодолением препятствий в городской среде. ANYmal также умеет справляться с пересечённой местностью, которая обычно встречается на строительных площадках или в зонах стихийных бедствий.
Чтобы научить робопса новым навыкам, две команды инженеров под руководством одного и того профессора Марко Хаттера с кафедры механики и технологических процессов, продвигались к достижению разными путями.
В одной из групп трудится Никита Рудин, который лично увлекается паркуром в свободное время. Он сказал, что до начала проекта ряд его коллег полагали, что четвероногие роботы в своём развитии достигли предела. Но у искушённого в паркуре Рудина было другое мнение. Более того — уверенность, что роботов можно научить куда большему.
С помощью машинного обучения инженер научил робопса новым навыкам. Теперь тот может взбираться на препятствия и выполнять сложные манёвры, чтобы спрыгнуть с них.
В процессе робот учился подобно детям, то есть путём проб и ошибок. Теперь, когда на его пути есть преграда, он благодаря своей видеокамере и искусственной нейронной сети определяет, с каким именно препятствием столкнулся. Затем выполняет оптимальные движения, которые на основе накопленного им опыта с наибольшей вероятностью окончатся успехом.
Рудин также объяснил, что робот получил возможность выходить за рамки предопределённых задач и теперь преодолевает труднопроходимую местность, например, бетонные завалы.
Подготовить ту же модель ANYmal именно к таким хаотичным трудностям стало задачей другого научного проекта, над которым трудился коллега Рудина из ETH Фабиан Дженелтен. Он объединил ради этого возможности машинного обучение с испытанным подходом, известным как управление на основе моделей.
Так называют относительно простой способ научить робота распознавать углубления в кучах щебня и преодолевать их. А машинное обучение при этом помогает освоить схемы движений, которые робот затем может гибко, в динамическом диапазоне, совершать в непредсказуемых ситуациях.
Сочетание обоих подходов позволяет нам получать максимальную отдачу от любого робота
— Фабиан Дженелтен, ETH Zurich.
— Фабиан Дженелтен, ETH Zurich.
В результате четвероногий робот теперь успешнее передвигается по скользким поверхностям или шатким валунам. Так учёные готовят мобильные устройства к работе в местах, опасных для человека. Например, на стройплощадках или после землетрясений.
- Дмитрий Ладыгин
- youtu.be/REvNnUzVDAA
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Вот уже 17 лет власти Египта запрещают археологам исследовать легендарный Лабиринт
Что скрывает Египет: библиотеку Атлантиды или доказательства переписывания истории?...

Тайна пиратского корабля за 138 миллионов долларов раскрыта у берегов Мадагаскара
Шторм, предательство, тонны золота: Как капитан Стервятник похитил сокровища португальской короны....

Третий гость из бездны: NASA официально подтвердило межзвездное происхождение объекта 3I/ATLAS
Скорость в 245 000 км/ч! Астрофизики говорят, гость «прострелит» Солнечную систему как пуля....

Воскрешение монстра: Colossal возвращает к жизни 3,6-метровую птицу-убийцу моа!
Сможет ли 230-килограммовый гигант из Новой Зеландии выжить среди людей?...

«Богатые тоже плачут»: США открыли «новую эру энергетики» — 800 часов в год без света!
Штаты хвастались ИИ, а электросети «горят» даже от чат-ботов… Россия тем временем запускает термояд....

Эксперты бьют тревогу: Таяние ледников разбудит вулканы по всему миру
Цепная реакция извержений прокатится от Антарктиды до Камчатки. Выбросы пепла и CO2 сделают климат невыносимым....