
Ученые создали функционирующий компьютер на основе человеческой мозговой ткани
Нет ни одного компьютера, даже в отдаленности приближающегося к мощности и сложности человеческого мозга. Клетки мозга способны манипулировать данными в таких объемах и с такой скоростью, с которыми современные вычислительные технологии не могут соревноваться.
Главным фактором, кардинально влияющим на результативность мозга, является необычайная способность нейронов одновременно выполнять функции процессора и запоминающего устройства, в противоположность физически изолированным компонентам, присутствующим в большинстве современных компьютерных устройств.
Существует множество попыток сделать вычисления на компьютерах подобными работе мозга, однако новое исследование выбрало еще более прогрессивный подход — интеграцию реальной, физической ткани человеческого мозга с электронными компонентами.
Его называют Brainoware, и он работает. Команда во главе с инженером Фенгом Гуо из Индианского университета Блумингтон протестировала биокомпьютер на таких задачах, как распознавание речи и решение нелинейных уравнений.
В результате биокомпьютер оказался чуть менее точным, чем компьютер на основе искусственного интеллекта, работающего на аппаратном уровне, но исследование продемонстрировало важный первый шаг в новом виде компьютерной архитектуры.
Человеческий мозг содержит около 86 миллиардов нейронов в среднем и до квадрильона синапсов. Каждый нейрон соединен с примерно 10 000 других нейронов, постоянно общающихся между собой. До сих пор лучшие попытки имитировать активность мозга в искусственной системе едва касались его поверхности.
В 2013 году Riken’s K Computer, когда-то один из самых мощных суперкомпьютеров в мире, предпринял попытку имитировать работу мозга. С 82 944 процессорами и петабайтом оперативной памяти, ему требовалось 40 минут, чтобы имитировать одну секунду активности 1,73 миллиарда нейронов, соединенных 10,4 триллионами синапсов — примерно один-два процента мозга.
В последние годы ученые и инженеры пытались приблизиться к возможностям мозга, разрабатывая аппаратные средства и алгоритмы, которые имитируют его структуру и работу. Нейроморфная вычислительная техника улучшается, но требует большого количества энергии, а обучение искусственных нейронных сетей занимает много времени.
Гуо и его коллеги предложили другой подход, используя реальную человеческую мозговую ткань, выращенную в лаборатории. Многопоточные стволовые клетки были приведены к развитию разных типов клеток мозга, которые организовались в трехмерные органоиды — миниатюрные мозги с соединениями и структурами.
Это не настоящие мозги, а просто массивы ткани, не обладающие ни мыслью, ни эмоцией, ни сознанием. Они полезны для изучения того, как развивается и работает мозг, не проникая в настоящий человеческий организм.
Brainoware включает в себя органоиды мозга, соединенные с плотным массивом микроэлектродов. Он использует метод искусственных нейронных сетей, известный как «резервуарные вычисления». С помощью электрических импульсов информация передается в органоид, который является своего рода резервуаром, где она подвергается обработке, перед тем как Brainoware представляет свои расчеты в виде нейронной активности.
Для ввода и вывода используется обычное аппаратное обеспечение компьютера. Эти слои должны быть обучены работать с органоидом, при этом выходной слой считывает нейронные данные и делает классификацию или предсказания на основе входных данных.

Пример одного из органоидов и его сканированной нейронной активности.
Для демонстрации системы исследователи предоставили Brainoware 240 аудиофрагментов восьми мужчин, произносящих японские гласные звуки, и попросили его идентифицировать голос одного конкретного человека. Исследователи начали эксперимент с органоида мозга, который не был обучен предварительно. После всего двухдневного обучения Brainoware смог с определенной точностью в 78 процентов идентифицировать говорящего.
Также Brainoware было предложено предсказать карту Хенона, динамическую систему, характеризующуюся хаотическим поведением. На протяжении четырех дней исследователи оставили его без присмотра, при этом каждый день являлся тренировочной эпохой. Было обнаружено, что Brainoware способен предсказывать карту с большей точностью, чем искусственная нейронная сеть без использования блока долгосрочной памяти.
Brainoware продемонстрировал немного меньшую точность по сравнению с искусственными нейронными сетями, использующими блок долгосрочной памяти. В то же время стоит отметить, что эти сети прошли 50 тренировочных эпох, в то время как Brainoware достиг схожих результатов менее чем за одну десятую часть времени обучения.
— Фенг Гуо.
На данный момент существуют существенные ограничения, включая проблемы поддержания жизни и здоровья органоидов, а также высокий уровень энергопотребления внешнего оборудования. Однако учитывая важность этических аспектов, Brainoware имеет не только ценность для вычислений, но и для более глубокого понимания таинственной природы человеческого мозга.
Прежде чем мы сможем разработать полноценные биокомпьютерные системы, может пройти много десятилетий. Тем не менее эти исследования, безусловно, принесут значительные открытия в понимании механизмов обучения, развития нервной системы и познавательных последствий нейродегенеративных заболеваний. Кроме того, эти исследования могут способствовать созданию преклинических моделей когнитивных нарушений для тестирования новых терапевтических средств.
Исследование было опубликовано в Nature Electronics.
Главным фактором, кардинально влияющим на результативность мозга, является необычайная способность нейронов одновременно выполнять функции процессора и запоминающего устройства, в противоположность физически изолированным компонентам, присутствующим в большинстве современных компьютерных устройств.
Существует множество попыток сделать вычисления на компьютерах подобными работе мозга, однако новое исследование выбрало еще более прогрессивный подход — интеграцию реальной, физической ткани человеческого мозга с электронными компонентами.
Его называют Brainoware, и он работает. Команда во главе с инженером Фенгом Гуо из Индианского университета Блумингтон протестировала биокомпьютер на таких задачах, как распознавание речи и решение нелинейных уравнений.
В результате биокомпьютер оказался чуть менее точным, чем компьютер на основе искусственного интеллекта, работающего на аппаратном уровне, но исследование продемонстрировало важный первый шаг в новом виде компьютерной архитектуры.
Человеческий мозг содержит около 86 миллиардов нейронов в среднем и до квадрильона синапсов. Каждый нейрон соединен с примерно 10 000 других нейронов, постоянно общающихся между собой. До сих пор лучшие попытки имитировать активность мозга в искусственной системе едва касались его поверхности.
В 2013 году Riken’s K Computer, когда-то один из самых мощных суперкомпьютеров в мире, предпринял попытку имитировать работу мозга. С 82 944 процессорами и петабайтом оперативной памяти, ему требовалось 40 минут, чтобы имитировать одну секунду активности 1,73 миллиарда нейронов, соединенных 10,4 триллионами синапсов — примерно один-два процента мозга.
В последние годы ученые и инженеры пытались приблизиться к возможностям мозга, разрабатывая аппаратные средства и алгоритмы, которые имитируют его структуру и работу. Нейроморфная вычислительная техника улучшается, но требует большого количества энергии, а обучение искусственных нейронных сетей занимает много времени.
Гуо и его коллеги предложили другой подход, используя реальную человеческую мозговую ткань, выращенную в лаборатории. Многопоточные стволовые клетки были приведены к развитию разных типов клеток мозга, которые организовались в трехмерные органоиды — миниатюрные мозги с соединениями и структурами.
Это не настоящие мозги, а просто массивы ткани, не обладающие ни мыслью, ни эмоцией, ни сознанием. Они полезны для изучения того, как развивается и работает мозг, не проникая в настоящий человеческий организм.
Brainoware включает в себя органоиды мозга, соединенные с плотным массивом микроэлектродов. Он использует метод искусственных нейронных сетей, известный как «резервуарные вычисления». С помощью электрических импульсов информация передается в органоид, который является своего рода резервуаром, где она подвергается обработке, перед тем как Brainoware представляет свои расчеты в виде нейронной активности.
Для ввода и вывода используется обычное аппаратное обеспечение компьютера. Эти слои должны быть обучены работать с органоидом, при этом выходной слой считывает нейронные данные и делает классификацию или предсказания на основе входных данных.

Пример одного из органоидов и его сканированной нейронной активности.
Для демонстрации системы исследователи предоставили Brainoware 240 аудиофрагментов восьми мужчин, произносящих японские гласные звуки, и попросили его идентифицировать голос одного конкретного человека. Исследователи начали эксперимент с органоида мозга, который не был обучен предварительно. После всего двухдневного обучения Brainoware смог с определенной точностью в 78 процентов идентифицировать говорящего.
Также Brainoware было предложено предсказать карту Хенона, динамическую систему, характеризующуюся хаотическим поведением. На протяжении четырех дней исследователи оставили его без присмотра, при этом каждый день являлся тренировочной эпохой. Было обнаружено, что Brainoware способен предсказывать карту с большей точностью, чем искусственная нейронная сеть без использования блока долгосрочной памяти.
Brainoware продемонстрировал немного меньшую точность по сравнению с искусственными нейронными сетями, использующими блок долгосрочной памяти. В то же время стоит отметить, что эти сети прошли 50 тренировочных эпох, в то время как Brainoware достиг схожих результатов менее чем за одну десятую часть времени обучения.
Из-за высокой пластичности и адаптивности органоиды, Brainoware имеет гибкость меняться и перестраиваться в ответ на электрическую стимуляцию, что подчеркивает его способность к адаптивным резервуарным вычислениям
— Фенг Гуо.
На данный момент существуют существенные ограничения, включая проблемы поддержания жизни и здоровья органоидов, а также высокий уровень энергопотребления внешнего оборудования. Однако учитывая важность этических аспектов, Brainoware имеет не только ценность для вычислений, но и для более глубокого понимания таинственной природы человеческого мозга.
Прежде чем мы сможем разработать полноценные биокомпьютерные системы, может пройти много десятилетий. Тем не менее эти исследования, безусловно, принесут значительные открытия в понимании механизмов обучения, развития нервной системы и познавательных последствий нейродегенеративных заболеваний. Кроме того, эти исследования могут способствовать созданию преклинических моделей когнитивных нарушений для тестирования новых терапевтических средств.
Исследование было опубликовано в Nature Electronics.
- Евгения Бусина
- Nat. Electron
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

NASA объявило: Найдены самые убедительные доказательства существования жизни на Марсе
Ученые тем временем выясняют, как могли выглядеть древние жители Красной планеты...

Специалисты предупреждают: Через три года интернет будет скорее мертвым, чем живым
Почему к 2030 году человеческое общение в сети может стать роскошью, а не нормой?...

Ученый утверждает: у него есть доказательства, что мы живем в матрице
По словам Мелвина Вопсона, подсказки он нашел в ДНК, расширении Вселенной и фундаментальных законах физики...

Найдена самая похожая на Землю планета. Готовимся к переезду?
TRAPPIST-1e идеальная: тепло, есть вода и атмосфера. Чем же тогда недовольны астрофизики?...

16-тонный саркофаг, заполненный сокровищами, может подтвердить одну из самых таинственных и кровавых легенд древнего Китая
Какой секрет хранила эта гробница, что оставалась единственной нетронутой два тысячелетия?...

Новая операция по объединению людей и животных может подарить… вечную жизнь
Медики признаются: уже сейчас можно сделать новое тело человека. Но один орган пока не поддается науке...

Археологи нашли медведя, который… побеждал гладиаторов
Исследование показало, что пленный зверь не хотел сдаваться до самого конца...

Оказывается, решение проблемы выбоин на дорогах существует уже почти 100 лет
Почему технология, забытая полвека назад, возвращается и становится очень популярной?...

Выяснилось, что полное восстановление озонового слоя закончится глобальной катастрофой
Как так вышло, что в борьбе за экологию человечество сделало себе еще хуже?...

К 2035 году сектор Газа должен стать… самым продвинутым регионом на планете под управлением ИИ
По словам экспертов, в дерзком эксперименте за 100 млрд долларов есть только один большой вопрос: Куда выселить местное население?...