Исследователи создали первые суперзеркала в среднем инфракрасном диапазоне
Международной группе специалистов удалось создать первые в мире сверхотражающие зеркала в среднем инфракрасном (ИК) диапазоне.
При разработке высокоэффективных зеркал специалисты стремятся достичь невозможного, то есть получить покрытия с безупречными отражательными свойствами. В видимом промежутке длин волн, от 380 до 700 нанометров (нм) самые эффективные зеркала из металла обеспечивают до 99% отражательной способности. Для понимания, это значит, что теряется один фотон из каждой сотни отражённых частиц света.
Казалось бы, 99% — это весьма достойный показатель, однако в ближнем ИК диапазоне — от 780 нм до 2,5 микрометра (мкм) — специальные зеркальные покрытия уже демонстрируют отражательную способность на 99,9997%. Иными словами, благодаря им из 1 млн отражённых фотонов теряются лишь три.
Уже давно учёных обуревает стремление охватить передовой технологией суперзеркала в среднем ИК диапазоне, то есть при длинах волн от 2,5 мкм до 10 мкм и выше. Побуждение — не сугубо научное: такой успех позволил бы достичь существенного прогресса, например, при измерении остаточных газов, что было бы интересно экологам, а также при анализе свойств биотоплива. А ещё удалось бы усовершенствовать такие технологии в промышленности и медицине, как лазерные резка материалов и хирургические ножи. Однако ещё совсем недавно наилучшие зеркала в среднем ИК диапазоне теряли один фотон из 10 тыс., а это в 33 раза хуже, чем суперзеркала в ближнем ИК диапазоне.
Но ситуация переменилась. В журнале Nature Communications международная группа учёных опубликовала статью о своём «зеркальном рекорде». Специалисты Венского университета с партнёрами из калифорнийской компании Thorlabs Crystalline Solutions смогли изготовить зеркала в среднем ИК диапазоне и с полупроводниковой оптикой типа CDL Mid-IR, теряющие лишь восемь фотонов из 1 млн. То есть у новейших суперзеркал отражательная способность 99,99923%.
На пути к поставленному рекорду исследователям пришлось подвергать точнейшему анализу и контролю материалы, конструкцию зеркал и технологический процесс. На первой иллюстрации — кристаллические полупроводниковые структуры с высокой отражающей способностью. Сначала их наращивают на пластинах арсенида галлия диаметром по 10 см и разделяют на отдельные зеркала. Затем каждый из этих дисков приклеивают к подложке для создания готового суперзеркала. На фото ниже — кремниевая подложка для суперзеркал диаметром 25 мм. Нанесённый базовый слой кажется фиолетовым.

В практическом плане прежде всего коллективу авторов пришлось продумать инновационный процесс, как же наносить покрытия. Они объединили распространённые способы нанесения тонкоплёночных полупроводников и новые технологии.
Однако воплощение оказалось лишь частью задачи. Создателям новейшего покрытия было интересно испытать эти зеркала на практике, тем самым подтвердив их наилучшие характеристики. Для этого привлекли государственных экспертов по стандартизации. И те подтвердили безусловное преимущество новой суперчувствительной спектроскопии. Так, они успешно измерили содержание радиоизотопов, что очень важно для криминалистики и углеродной датировке.
При разработке высокоэффективных зеркал специалисты стремятся достичь невозможного, то есть получить покрытия с безупречными отражательными свойствами. В видимом промежутке длин волн, от 380 до 700 нанометров (нм) самые эффективные зеркала из металла обеспечивают до 99% отражательной способности. Для понимания, это значит, что теряется один фотон из каждой сотни отражённых частиц света.
Казалось бы, 99% — это весьма достойный показатель, однако в ближнем ИК диапазоне — от 780 нм до 2,5 микрометра (мкм) — специальные зеркальные покрытия уже демонстрируют отражательную способность на 99,9997%. Иными словами, благодаря им из 1 млн отражённых фотонов теряются лишь три.
Уже давно учёных обуревает стремление охватить передовой технологией суперзеркала в среднем ИК диапазоне, то есть при длинах волн от 2,5 мкм до 10 мкм и выше. Побуждение — не сугубо научное: такой успех позволил бы достичь существенного прогресса, например, при измерении остаточных газов, что было бы интересно экологам, а также при анализе свойств биотоплива. А ещё удалось бы усовершенствовать такие технологии в промышленности и медицине, как лазерные резка материалов и хирургические ножи. Однако ещё совсем недавно наилучшие зеркала в среднем ИК диапазоне теряли один фотон из 10 тыс., а это в 33 раза хуже, чем суперзеркала в ближнем ИК диапазоне.
Но ситуация переменилась. В журнале Nature Communications международная группа учёных опубликовала статью о своём «зеркальном рекорде». Специалисты Венского университета с партнёрами из калифорнийской компании Thorlabs Crystalline Solutions смогли изготовить зеркала в среднем ИК диапазоне и с полупроводниковой оптикой типа CDL Mid-IR, теряющие лишь восемь фотонов из 1 млн. То есть у новейших суперзеркал отражательная способность 99,99923%.
На пути к поставленному рекорду исследователям пришлось подвергать точнейшему анализу и контролю материалы, конструкцию зеркал и технологический процесс. На первой иллюстрации — кристаллические полупроводниковые структуры с высокой отражающей способностью. Сначала их наращивают на пластинах арсенида галлия диаметром по 10 см и разделяют на отдельные зеркала. Затем каждый из этих дисков приклеивают к подложке для создания готового суперзеркала. На фото ниже — кремниевая подложка для суперзеркал диаметром 25 мм. Нанесённый базовый слой кажется фиолетовым.

В практическом плане прежде всего коллективу авторов пришлось продумать инновационный процесс, как же наносить покрытия. Они объединили распространённые способы нанесения тонкоплёночных полупроводников и новые технологии.
Однако воплощение оказалось лишь частью задачи. Создателям новейшего покрытия было интересно испытать эти зеркала на практике, тем самым подтвердив их наилучшие характеристики. Для этого привлекли государственных экспертов по стандартизации. И те подтвердили безусловное преимущество новой суперчувствительной спектроскопии. Так, они успешно измерили содержание радиоизотопов, что очень важно для криминалистики и углеродной датировке.
- Дмитрий Ладыгин
- phys.org
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Секрет 14-го моря России: куда оно пропало и почему о нем снова заговорили?
Эксперты напоминают: Кроме Печорского, у России есть и 15-е «забытое» море, и оно тоже возвращается на карты...
Золотой колокольчик из Эрмитажа: почему Владимир Путин запретил выставлять этот артефакт за границей?
Сколько сокровищ потеряла Россия в последнее время, пока не поняла, что договоры с Западом не стоят даже бумаги, на которой написаны?...
Главная тайна Черного моря разгадана: Ученые рассказали, почему там на дне очень прозрачная пресная вода
Чтобы найти ответ, исследователям пришлось заглянуть на 8 тысяч лет назад...
Операция «Байконур»: как СССР дерзко и красиво долгие годы водил за нос весь Запад
С какого космодрома на самом деле стартовал Юрий Гагарин?...
3500-летние рисунки на камнях российского острова Вайгач грозят переписать древнюю историю Арктики
Ученые рассказали, кем были мореходы из забытой цивилизации Русского Севера...
Ученые рассказали, какой фрукт подчинил себе весь Китай
Как продукт с очень специфическим запахом стал управлять дипломатией и экономикой Юго-Восточной Азии?...
Американский авиалайнер резко рухнул на 7000 метров: эксперты считают виновником сбоя космические лучи из глубин Галактики
В этот раз катастрофа не произошла, но под угрозой электроника самолетов, космических аппаратов и даже автомобилей. Почему так происходит?...
Забытые истории: где искать потерянные русские города?
Последний языческий город, почему Тмутаракань — головная боль археологов и что не так со Старой Рязанью...
Главная тайна Аркаима: что спасло самый древний город на территории России от полного уничтожения?
Почему эксперты считают, что в этом месте «текут» две параллельные реальности?...
Наука в корне ошибалась: на Титане нет огромного океана, вместо этого он пронизан «слякотными туннелями»
Почему ученые уверены, что новое открытие только увеличивает шансы на нахождение жизни на крупнейшем спутнике Сатурна?...
Чужое сердце, чужая жизнь: эти истории заставляют сомневаться в науке
Новое исследование говорит: 90% людей, получивших чужие органы, признаются, что они странно изменились после операции...
11 лет обмана и позора: Эксперты констатируют, что программа «Чистый Эверест» с треском провалилась
Кто и почему превращает высочайшую гору на планете в гигантскую свалку?...