
Исследователи создали первые суперзеркала в среднем инфракрасном диапазоне
Международной группе специалистов удалось создать первые в мире сверхотражающие зеркала в среднем инфракрасном (ИК) диапазоне.
При разработке высокоэффективных зеркал специалисты стремятся достичь невозможного, то есть получить покрытия с безупречными отражательными свойствами. В видимом промежутке длин волн, от 380 до 700 нанометров (нм) самые эффективные зеркала из металла обеспечивают до 99% отражательной способности. Для понимания, это значит, что теряется один фотон из каждой сотни отражённых частиц света.
Казалось бы, 99% — это весьма достойный показатель, однако в ближнем ИК диапазоне — от 780 нм до 2,5 микрометра (мкм) — специальные зеркальные покрытия уже демонстрируют отражательную способность на 99,9997%. Иными словами, благодаря им из 1 млн отражённых фотонов теряются лишь три.
Уже давно учёных обуревает стремление охватить передовой технологией суперзеркала в среднем ИК диапазоне, то есть при длинах волн от 2,5 мкм до 10 мкм и выше. Побуждение — не сугубо научное: такой успех позволил бы достичь существенного прогресса, например, при измерении остаточных газов, что было бы интересно экологам, а также при анализе свойств биотоплива. А ещё удалось бы усовершенствовать такие технологии в промышленности и медицине, как лазерные резка материалов и хирургические ножи. Однако ещё совсем недавно наилучшие зеркала в среднем ИК диапазоне теряли один фотон из 10 тыс., а это в 33 раза хуже, чем суперзеркала в ближнем ИК диапазоне.
Но ситуация переменилась. В журнале Nature Communications международная группа учёных опубликовала статью о своём «зеркальном рекорде». Специалисты Венского университета с партнёрами из калифорнийской компании Thorlabs Crystalline Solutions смогли изготовить зеркала в среднем ИК диапазоне и с полупроводниковой оптикой типа CDL Mid-IR, теряющие лишь восемь фотонов из 1 млн. То есть у новейших суперзеркал отражательная способность 99,99923%.
На пути к поставленному рекорду исследователям пришлось подвергать точнейшему анализу и контролю материалы, конструкцию зеркал и технологический процесс. На первой иллюстрации — кристаллические полупроводниковые структуры с высокой отражающей способностью. Сначала их наращивают на пластинах арсенида галлия диаметром по 10 см и разделяют на отдельные зеркала. Затем каждый из этих дисков приклеивают к подложке для создания готового суперзеркала. На фото ниже — кремниевая подложка для суперзеркал диаметром 25 мм. Нанесённый базовый слой кажется фиолетовым.

В практическом плане прежде всего коллективу авторов пришлось продумать инновационный процесс, как же наносить покрытия. Они объединили распространённые способы нанесения тонкоплёночных полупроводников и новые технологии.
Однако воплощение оказалось лишь частью задачи. Создателям новейшего покрытия было интересно испытать эти зеркала на практике, тем самым подтвердив их наилучшие характеристики. Для этого привлекли государственных экспертов по стандартизации. И те подтвердили безусловное преимущество новой суперчувствительной спектроскопии. Так, они успешно измерили содержание радиоизотопов, что очень важно для криминалистики и углеродной датировке.
При разработке высокоэффективных зеркал специалисты стремятся достичь невозможного, то есть получить покрытия с безупречными отражательными свойствами. В видимом промежутке длин волн, от 380 до 700 нанометров (нм) самые эффективные зеркала из металла обеспечивают до 99% отражательной способности. Для понимания, это значит, что теряется один фотон из каждой сотни отражённых частиц света.
Казалось бы, 99% — это весьма достойный показатель, однако в ближнем ИК диапазоне — от 780 нм до 2,5 микрометра (мкм) — специальные зеркальные покрытия уже демонстрируют отражательную способность на 99,9997%. Иными словами, благодаря им из 1 млн отражённых фотонов теряются лишь три.
Уже давно учёных обуревает стремление охватить передовой технологией суперзеркала в среднем ИК диапазоне, то есть при длинах волн от 2,5 мкм до 10 мкм и выше. Побуждение — не сугубо научное: такой успех позволил бы достичь существенного прогресса, например, при измерении остаточных газов, что было бы интересно экологам, а также при анализе свойств биотоплива. А ещё удалось бы усовершенствовать такие технологии в промышленности и медицине, как лазерные резка материалов и хирургические ножи. Однако ещё совсем недавно наилучшие зеркала в среднем ИК диапазоне теряли один фотон из 10 тыс., а это в 33 раза хуже, чем суперзеркала в ближнем ИК диапазоне.
Но ситуация переменилась. В журнале Nature Communications международная группа учёных опубликовала статью о своём «зеркальном рекорде». Специалисты Венского университета с партнёрами из калифорнийской компании Thorlabs Crystalline Solutions смогли изготовить зеркала в среднем ИК диапазоне и с полупроводниковой оптикой типа CDL Mid-IR, теряющие лишь восемь фотонов из 1 млн. То есть у новейших суперзеркал отражательная способность 99,99923%.
На пути к поставленному рекорду исследователям пришлось подвергать точнейшему анализу и контролю материалы, конструкцию зеркал и технологический процесс. На первой иллюстрации — кристаллические полупроводниковые структуры с высокой отражающей способностью. Сначала их наращивают на пластинах арсенида галлия диаметром по 10 см и разделяют на отдельные зеркала. Затем каждый из этих дисков приклеивают к подложке для создания готового суперзеркала. На фото ниже — кремниевая подложка для суперзеркал диаметром 25 мм. Нанесённый базовый слой кажется фиолетовым.

В практическом плане прежде всего коллективу авторов пришлось продумать инновационный процесс, как же наносить покрытия. Они объединили распространённые способы нанесения тонкоплёночных полупроводников и новые технологии.
Однако воплощение оказалось лишь частью задачи. Создателям новейшего покрытия было интересно испытать эти зеркала на практике, тем самым подтвердив их наилучшие характеристики. Для этого привлекли государственных экспертов по стандартизации. И те подтвердили безусловное преимущество новой суперчувствительной спектроскопии. Так, они успешно измерили содержание радиоизотопов, что очень важно для криминалистики и углеродной датировке.
- Дмитрий Ладыгин
- phys.org
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Специалисты предупреждают: ни в коем случае не ставьте MAX на личный телефон!
Рассказываем, почему навязываемый россиянам мессенджер удобен в первую очередь мошенникам...

26 ран и 750 лет молчания: Анализ ДНК раскрыл тайну очень жестокого убийства русского князя в Будапеште
Международная команда ученых сумела на 100% доказать личность погибшего...

Ученые наконец-то раскрыли тайну происхождения гигантских волн-убийц
Расследование продолжалось долгих 18 лет. Теперь о старых теориях можно навсегда забыть...

Ученые подтверждают: Человеческое сознание может перемещаться во времени
А интуиция — воспоминание о будущем. Это доказали секретные эксперименты в ЦРУ...

Работу самой мощной АЭС в Европе полностью парализовали… обычные медузы
Эксперты говорят: это очередное подтверждение того, что энергетика ЕС — это колосс на глиняных ногах...

Астрофизики были поражены, обнаружив «тоннель», соединяющий Солнечную систему с другими звездами
Исследователи из Института Макса Планка уверены: гигантская «транспортная сеть» охватывает всю нашу Галактику...

Полная расшифровка ДНК хатыстырского человека выявила древнюю колыбель человечества в России
Геном охотника, жившего 9 800 лет назад, полностью подтвердил теорию российских ученых, которую мир не принимал десятилетиями...