Исследователи создали первые суперзеркала в среднем инфракрасном диапазоне
Международной группе специалистов удалось создать первые в мире сверхотражающие зеркала в среднем инфракрасном (ИК) диапазоне.
При разработке высокоэффективных зеркал специалисты стремятся достичь невозможного, то есть получить покрытия с безупречными отражательными свойствами. В видимом промежутке длин волн, от 380 до 700 нанометров (нм) самые эффективные зеркала из металла обеспечивают до 99% отражательной способности. Для понимания, это значит, что теряется один фотон из каждой сотни отражённых частиц света.
Казалось бы, 99% — это весьма достойный показатель, однако в ближнем ИК диапазоне — от 780 нм до 2,5 микрометра (мкм) — специальные зеркальные покрытия уже демонстрируют отражательную способность на 99,9997%. Иными словами, благодаря им из 1 млн отражённых фотонов теряются лишь три.
Уже давно учёных обуревает стремление охватить передовой технологией суперзеркала в среднем ИК диапазоне, то есть при длинах волн от 2,5 мкм до 10 мкм и выше. Побуждение — не сугубо научное: такой успех позволил бы достичь существенного прогресса, например, при измерении остаточных газов, что было бы интересно экологам, а также при анализе свойств биотоплива. А ещё удалось бы усовершенствовать такие технологии в промышленности и медицине, как лазерные резка материалов и хирургические ножи. Однако ещё совсем недавно наилучшие зеркала в среднем ИК диапазоне теряли один фотон из 10 тыс., а это в 33 раза хуже, чем суперзеркала в ближнем ИК диапазоне.
Но ситуация переменилась. В журнале Nature Communications международная группа учёных опубликовала статью о своём «зеркальном рекорде». Специалисты Венского университета с партнёрами из калифорнийской компании Thorlabs Crystalline Solutions смогли изготовить зеркала в среднем ИК диапазоне и с полупроводниковой оптикой типа CDL Mid-IR, теряющие лишь восемь фотонов из 1 млн. То есть у новейших суперзеркал отражательная способность 99,99923%.
На пути к поставленному рекорду исследователям пришлось подвергать точнейшему анализу и контролю материалы, конструкцию зеркал и технологический процесс. На первой иллюстрации — кристаллические полупроводниковые структуры с высокой отражающей способностью. Сначала их наращивают на пластинах арсенида галлия диаметром по 10 см и разделяют на отдельные зеркала. Затем каждый из этих дисков приклеивают к подложке для создания готового суперзеркала. На фото ниже — кремниевая подложка для суперзеркал диаметром 25 мм. Нанесённый базовый слой кажется фиолетовым.

В практическом плане прежде всего коллективу авторов пришлось продумать инновационный процесс, как же наносить покрытия. Они объединили распространённые способы нанесения тонкоплёночных полупроводников и новые технологии.
Однако воплощение оказалось лишь частью задачи. Создателям новейшего покрытия было интересно испытать эти зеркала на практике, тем самым подтвердив их наилучшие характеристики. Для этого привлекли государственных экспертов по стандартизации. И те подтвердили безусловное преимущество новой суперчувствительной спектроскопии. Так, они успешно измерили содержание радиоизотопов, что очень важно для криминалистики и углеродной датировке.
При разработке высокоэффективных зеркал специалисты стремятся достичь невозможного, то есть получить покрытия с безупречными отражательными свойствами. В видимом промежутке длин волн, от 380 до 700 нанометров (нм) самые эффективные зеркала из металла обеспечивают до 99% отражательной способности. Для понимания, это значит, что теряется один фотон из каждой сотни отражённых частиц света.
Казалось бы, 99% — это весьма достойный показатель, однако в ближнем ИК диапазоне — от 780 нм до 2,5 микрометра (мкм) — специальные зеркальные покрытия уже демонстрируют отражательную способность на 99,9997%. Иными словами, благодаря им из 1 млн отражённых фотонов теряются лишь три.
Уже давно учёных обуревает стремление охватить передовой технологией суперзеркала в среднем ИК диапазоне, то есть при длинах волн от 2,5 мкм до 10 мкм и выше. Побуждение — не сугубо научное: такой успех позволил бы достичь существенного прогресса, например, при измерении остаточных газов, что было бы интересно экологам, а также при анализе свойств биотоплива. А ещё удалось бы усовершенствовать такие технологии в промышленности и медицине, как лазерные резка материалов и хирургические ножи. Однако ещё совсем недавно наилучшие зеркала в среднем ИК диапазоне теряли один фотон из 10 тыс., а это в 33 раза хуже, чем суперзеркала в ближнем ИК диапазоне.
Но ситуация переменилась. В журнале Nature Communications международная группа учёных опубликовала статью о своём «зеркальном рекорде». Специалисты Венского университета с партнёрами из калифорнийской компании Thorlabs Crystalline Solutions смогли изготовить зеркала в среднем ИК диапазоне и с полупроводниковой оптикой типа CDL Mid-IR, теряющие лишь восемь фотонов из 1 млн. То есть у новейших суперзеркал отражательная способность 99,99923%.
На пути к поставленному рекорду исследователям пришлось подвергать точнейшему анализу и контролю материалы, конструкцию зеркал и технологический процесс. На первой иллюстрации — кристаллические полупроводниковые структуры с высокой отражающей способностью. Сначала их наращивают на пластинах арсенида галлия диаметром по 10 см и разделяют на отдельные зеркала. Затем каждый из этих дисков приклеивают к подложке для создания готового суперзеркала. На фото ниже — кремниевая подложка для суперзеркал диаметром 25 мм. Нанесённый базовый слой кажется фиолетовым.

В практическом плане прежде всего коллективу авторов пришлось продумать инновационный процесс, как же наносить покрытия. Они объединили распространённые способы нанесения тонкоплёночных полупроводников и новые технологии.
Однако воплощение оказалось лишь частью задачи. Создателям новейшего покрытия было интересно испытать эти зеркала на практике, тем самым подтвердив их наилучшие характеристики. Для этого привлекли государственных экспертов по стандартизации. И те подтвердили безусловное преимущество новой суперчувствительной спектроскопии. Так, они успешно измерили содержание радиоизотопов, что очень важно для криминалистики и углеродной датировке.
- Дмитрий Ладыгин
- phys.org
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Загадочный взрыв над Москвой: зачем NASA срочно удалило все данные об объекте 2025 US6?
И почему эксперты говорят, что мы никогда не узнаем правды?...
Активность нечеловеческого разума вблизи ядерных объектов США, СССР и Великобритании впервые получила научные доказательства
Критики не смогли опровергнуть работу шведских ученых о странных искусственных аномалиях на орбите...
Российские ученые создали уникальный материал будущего: новый металл прочнее любой стали, но дешевле даже алюминия
Мир высоких технологий ждал этого открытия десятилетия. Наша страна получила реальный шанс стать лидером металлургии...
В России обнаружена рыба, которая 70 лет считалась полностью вымершей
И не единственная такая сенсация в нашей стране за последние годы...
Ученые наконец-то взломали астрономический код цивилизации майя
700 лет точных предсказаний, 145 солнечных затмений: гениальный способ из древности отлично работает до сих пор...
«Парящие» берлоги: Как треугольные дома помогут России удержать Арктику
Кто победит? Глобальное изменение климата или новые технологии?...
1300 лет назад неизвестные грабители вскрыли гробницу знатного воина, но вообще не тронули сокровищ. Почему?
Венгерские археологи уверены, что разгадали этот мистический детектив. Но так ли это на самом деле?...
Россия снова первая: в космосе вырастили идеальные кристаллы!
Рассказываем, почему проект «Экран-М» может стать началом новой эры полупроводников, где Россия будет ведущей в мире...
Тающий лед Антарктиды прячет от нас глубинную «бомбу» замедленного действия
Неожиданный климатический парадокс: малая беда хранит человечество от большой. Но это ненадолго...
Какие тайны скрывает 40 000-летний... карандаш, найденный в одной из пещер Крыма?
И почему ученые уверены, что эта находка заставляет в корне пересмотреть древнейшую историю человечества?...
Эксперимент показал, что на самом деле творится под марсианскими дюнами каждую весну
Оказалось, что с наступлением тепла на Красной планете активизируются... ледяные «кроты»...
Ученые из Хьюстона рассказали, почему Земля и другие планеты умудрились не сгореть в недрах молодого Солнца
Как оказалось, Солнечную систему в буквальном смысле спас Юпитер, который решительно выступил против гравитационного диктата звезды...
Тайна изумрудной мумии, не дававшей покоя ученым 38 лет, наконец-то разгадана!
Ученые признаются: они не ожидали, что им придется раскрыть самый настоящий химический детектив...