Созданы материалы для микроскопической 3D-печати с более точной усадкой
Трёхмерная печать стала революцией в создании сложных конструкций различных размеров, от жилья до слуховых аппаратов. Разновидность 3D-печати, известная двухфотонная лазерная литография или двухфотонная полимеризация (TPL), дала возможность учёным и инженерам воплощать необходимое с микроскопической точностью. Технология задала широкие перспективы для различных отраслей, от медизделий до тяжёлой промышленности.
При создании электроники и коммуникационного оборудования TPL можно использовать для получения новых оптических материалов. Фотонные кристаллы помогают преломлять свет новыми способами. Но на пути к полному успеху применения TPL стояла проблема равномерной усадки и размерности деталей вне пределов видимого спектра, а это было важно для высокотехнологичной «игры» со со светом.
За решение задачи взялись исследователи из Сингапурского университета технологии и дизайна (SUTD) под руководством профессора Джоэла Янга. С коллегами из Центра промышленных технологий префектуры Вакаяма, Япония, они представили метод термической обработки для равномерной усадки полученного путём трёхмерной печати. Технология улучшила возможности TPL для создания высокоточных деталей наномасштаба.
Изобретатели нанесли слой поливинилового спирта (да, разновидности известного нам в быту ПВА) на печатную основу. Тем самым они облегчили перенос напечатанных деталей на отдельную подложку, обеспечив контролируемое и равномерное масштабирование трёхмерных деталей в меньшую сторону. Неплотное крепление к подложке приводит к тому, что вся 3D-«распечатка» равномерно сжимается при нагревании.
Простой, но эффективный подход позволяет обойти проблему неравномерной усадки. Обычно такие погрешности возникают из-за «приставучести» детали к основанию. Разработанный метод также позволяет переносить напечатанные детали микроскопических размеров для совмещения их с другими устройствами или для размещения на подложках, непригодных для TPL.
Янг объяснил, что при работе держал в уме пример из природы: как дождевые черви меняют свои формы и размеры для перемещения. Инженеры хотели, чтобы их 3D-структуры меняли масштабы без искажений в пропорциях.
Соавтор работы Томохиро Мори рассказал, что их метод они с успехом испытали при печати сложной символики родной для учёного японской префектуры Вакаяма. Равномерная усадка крошечных моделей продемонстрировала, что метод можно настроить под создание изделий любой формы, независимо от геометрии или прочности подложки. Печатное оборудование позволило преодолеть прежние барьеры относительно разрешения и жёсткости материалов.
Более того, изобретённый процесс усадки в перспективе позволит повысить детализацию напечатанного настолько, что можно будет печатать цветные изделия из одного материала. Речь идёт о так называемых структурных цветах. Ими отличаются, например, крылья бабочек, им обязана удивительная окраска жуков, вплоть до зеркально-золотистого. Суть структурных цветов не в красителях, а в поверхности, которая благодаря микроскопической текстуре особым образом преломляет свет.
Янг объяснил, что таким путём можно было бы получать, например, материалы с новыми функциями. Включение в структуры молекул, чувствительных к различным типам света, позволит в перспективе создавать вещи, которые меняют цвет в зависимости от освещения. На практике это означало бы успешную борьбу с контрафактом, когда определённые детали или метки попросту невозможно подделать.
А ещё разработанная технология 3D-печати очень пригодилась бы в электронике, для изготовления сложных радиаторов — чтобы охлаждать ультрасовременные графические процессоры.
Усадка компонентов также открывает возможности для создания сложных деталей для механики, оптики и высокоточной акустики.
Также исследователи планируют печатать фотонные кристаллы, совершенствуя лазеры, системы визуализации и оптические датчики.
При создании электроники и коммуникационного оборудования TPL можно использовать для получения новых оптических материалов. Фотонные кристаллы помогают преломлять свет новыми способами. Но на пути к полному успеху применения TPL стояла проблема равномерной усадки и размерности деталей вне пределов видимого спектра, а это было важно для высокотехнологичной «игры» со со светом.
За решение задачи взялись исследователи из Сингапурского университета технологии и дизайна (SUTD) под руководством профессора Джоэла Янга. С коллегами из Центра промышленных технологий префектуры Вакаяма, Япония, они представили метод термической обработки для равномерной усадки полученного путём трёхмерной печати. Технология улучшила возможности TPL для создания высокоточных деталей наномасштаба.
Изобретатели нанесли слой поливинилового спирта (да, разновидности известного нам в быту ПВА) на печатную основу. Тем самым они облегчили перенос напечатанных деталей на отдельную подложку, обеспечив контролируемое и равномерное масштабирование трёхмерных деталей в меньшую сторону. Неплотное крепление к подложке приводит к тому, что вся 3D-«распечатка» равномерно сжимается при нагревании.
Простой, но эффективный подход позволяет обойти проблему неравномерной усадки. Обычно такие погрешности возникают из-за «приставучести» детали к основанию. Разработанный метод также позволяет переносить напечатанные детали микроскопических размеров для совмещения их с другими устройствами или для размещения на подложках, непригодных для TPL.
Янг объяснил, что при работе держал в уме пример из природы: как дождевые черви меняют свои формы и размеры для перемещения. Инженеры хотели, чтобы их 3D-структуры меняли масштабы без искажений в пропорциях.
Соавтор работы Томохиро Мори рассказал, что их метод они с успехом испытали при печати сложной символики родной для учёного японской префектуры Вакаяма. Равномерная усадка крошечных моделей продемонстрировала, что метод можно настроить под создание изделий любой формы, независимо от геометрии или прочности подложки. Печатное оборудование позволило преодолеть прежние барьеры относительно разрешения и жёсткости материалов.
Более того, изобретённый процесс усадки в перспективе позволит повысить детализацию напечатанного настолько, что можно будет печатать цветные изделия из одного материала. Речь идёт о так называемых структурных цветах. Ими отличаются, например, крылья бабочек, им обязана удивительная окраска жуков, вплоть до зеркально-золотистого. Суть структурных цветов не в красителях, а в поверхности, которая благодаря микроскопической текстуре особым образом преломляет свет.
Янг объяснил, что таким путём можно было бы получать, например, материалы с новыми функциями. Включение в структуры молекул, чувствительных к различным типам света, позволит в перспективе создавать вещи, которые меняют цвет в зависимости от освещения. На практике это означало бы успешную борьбу с контрафактом, когда определённые детали или метки попросту невозможно подделать.
А ещё разработанная технология 3D-печати очень пригодилась бы в электронике, для изготовления сложных радиаторов — чтобы охлаждать ультрасовременные графические процессоры.
Усадка компонентов также открывает возможности для создания сложных деталей для механики, оптики и высокоточной акустики.
Также исследователи планируют печатать фотонные кристаллы, совершенствуя лазеры, системы визуализации и оптические датчики.
- Дмитрий Ладыгин
- nature.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Тайна племени калуса: зачем коренные американцы вылавливали тоннами ядовитую рыбу
Исчезнувший народ создал остров площадью 51 гектар....
Ученые назвали привычки, которые могут сохранить ваш мозг молодым в 70 лет
Хорошая новость: это по силам каждому....
В магнитном поле Земли быстро разрастается огромная «слабая точка»
Эксперты предупреждают: аномалия может иметь далекоидущие последствия....
Сканирование показало поразительные различия между мужским и женским мозгом
Теперь ученые могут объяснить, почему женщины так эмоциональны, а мужчины хорошо ориентируются в пространстве....
В течение двух-трех лет Россия займет первое место по производству криптовалюты
Эксперты рассказали, почему майнинг произведет информационную революцию в нашей стране....
Тревога нарастает: ИИ требует так много энергии, что это уже вредит потребителям
Информационное агентство «Блумберг» провело расследование....
Раскрыта тайна супероружия доисторических хищников
Стало известно, почему саблезубые кошки появлялись много раз, но потом неизбежно вымирали....
В Америке стремительно растет количество домашних животных, употребляющих… кокаин
По словам экспертов из здравоохранения, такой рост — это лишь одна из сторон общего кризиса....
Ездило по кругу: американец оказался в ловушке в беспилотном такси Waymo
Очередной скандал приключился с брендом арендуемого автономного транспорта....
Углеводы зовут и повелевают!
Как древний ген управляет вашими желаниями....
В Японии построен настоящий город из будущего
Но захотят ли люди жить в таком месте?...
Новая корова спасет планету от глобального потепления
Генетики урезали ей до минимума отрыжку и не только....
Садовые войны: муравьи безошибочно запоминают своих врагов
И в этом они похожи на… слонов....
Новая технология сделает сильнее отряды киборгов
Пройдут вслед за лидером, выручая друг друга....
Двойной подход: в НАСА будут доставлять образцы с Марса одновременно двумя способами
Разработали план под давлением суровой реальности....
Электрическая панама может одновременно заряжать до двух устройств
Но гулять в странном головном уборе придётся долго....