ВСЛУХ

Идеальный переключатель: редкое явление в металле открывает новые возможности для квантовых технологий

Идеальный переключатель: редкое явление в металле открывает новые возможности для квантовых технологий
При комнатной температуре материал ведет себя как металл, но при понижении температуры становится изолятором.


Это явление происходит в пурпурной бронзе — уникальном одномерном металле, состоящем из проводящих цепочек атомов. Исследование, проведенное Бристольским университетом и опубликованное в журнале Science, показывает существование двух противоположных электронных состояний в этом материале — изолятора с нулевой проводимостью и сверхпроводника с неограниченной проводимостью.

Удивительным фактом является то, что малейшие изменения в окружающей среде, такие как тепло или свет, могут мгновенно изменить состояние материала — из изолятора он может превратиться в сверхпроводник и наоборот. Это явление, названное «эмерджентной симметрией», может быть ключом к созданию идеального переключателя для будущих квантовых технологий.

Руководитель исследования, профессор Найджел Хасси из Бристольского университета, назвал это открытие захватывающим и потенциально важным для квантовых устройств будущего. Этот уникальный результат исследования возник благодаря работе двух аспирантов, Сяофэна Сюя и Ника Уэйкхема, которые измерили магнитосопротивление пурпурной бронзы.

Обнаружено, что сопротивление материала сильно зависит от направления электрического тока и температуры. При комнатной температуре материал ведет себя как металл, но при понижении температуры становится изолятором. При еще более низких температурах материал внезапно переходит в сверхпроводящее состояние, и его сопротивление резко падает.

Интересно то, что хотя сопротивление материала имеет сложную температурную зависимость, магнитосопротивление оказалось чрезвычайно простым. Оно не зависит от направления тока или магнитного поля и обладает идеальной линейной температурной зависимостью. Такое поведение не имеет простого объяснения и может быть разрешено только случайными столкновениями.

Профессор Хасси рассказал, что данные этих необычных наблюдений лежали бездействующими и неопубликованными в течение семи лет, потому что их поведение противоречило известным моделям. Но в 2017 году он увидел рекламу семинара доктора Петра Чудзинского о пурпурной бронзе и заинтересовался этой темой.

Не найдя внятного объяснения такому загадочному поведению, данные лежали бездействующими и публиковались неопубликованными в течение следующих семи лет. Подобный перерыв необычен для квантовых исследований , хотя причиной его не было отсутствие статистики.
Такая простота магнитного отклика неизменно противоречит сложному происхождению, и, как оказывается, его возможное разрешение может произойти только в результате случайного столкновения

— профессор Хасси.

На семинаре профессор Чудзински предложил, что резистивный подъем может быть результатом взаимодействия между носителями заряда и экситонами — неуловимыми составными частями материала. Эта гипотеза была подтверждена экспериментально. Затем профессор Хасси предложил доктору Чудзински восстановить данные о магнитосопротивлении, полученные Сюем и Уэйкхемом, что привело к дальнейшим исследованиям и открытиям.

Открытие показывает, как важно быть открытым для неожиданных результатов и использовать разные подходы в научных исследованиях. Результаты этого исследования могут пролить свет на создание новых квантовых устройств и улучшить наши возможности в этой области.

Автор:

Мы в Мы в Яндекс Дзен
Топ странных, но крутых вопросов современной физикиКак физики симулируют путешествие во времени для решения невозможных задач