Ученые из ETH Zurich сделали удивительное открытие в области магнетизма
Созданный в лаборатории новый материал приобретает магнитные свойства по совершенно новому механизму, который никогда ранее не встречался.
Мы все знакомы с магнетизмом по тому, как магниты держатся на холодильнике. Эти магниты имеют свойство, которое называется ферромагнетизмом. Это значит, что все электроны в материале направлены в одну сторону своими спинами. Спин — это квантовая характеристика, которая определяет магнитный момент. Но есть и другие типы магнетизма, например, парамагнетизм. Он слабее и появляется, когда спины электронов распределены случайно.
В работе, опубликованной в журнале Nature, ученые исследовали магнитные свойства так называемых муар-материалов. Это экспериментальные материалы, состоящие из двух слоев атомарно тонких кристаллов дисульфида вольфрама и диселенида молибдена, уложенных друг на друга под небольшим углом. Это создает решеточную структуру с пустыми местами, которые можно насытить электронами.
Муар-материалы представляют большой интерес для физиков, потому что они имеют уникальные свойства, которые не наблюдаются в отдельных листах или в объемных материалах. Например, в нихх могут возникать новые виды частиц, называемых квазичастицами, которые имитируют поведение элементарных частиц, таких как электроны, фотоны, фермионы и бозоны. Квазичастицы могут иметь различные заряды, массы, спины и другие характеристики, которые зависят от параметров решетки. Кроме того, в муар-материалах могут возникать новые виды взаимодействий между квазичастицами, которые определяют их физические свойства, такие как проводимость, сверхпроводимость, сверхтекучесть, магнетизм и т. д.
Чтобы проверить, какой вид магнетизма имеют исследуемые материалы, ученые сначала насытили их структуру электронами. Для этого они подавали электрический ток, постепенно увеличивая напряжение. Затем на поверхность материала направили луч лазера и зафиксировали, как меняется отраженный свет в зависимости от его поляризации. Это позволило выяснить, ориентированы ли спины электронов в одну сторону (что свидетельствует о ферромагнетизме) или в разные (что свидетельствует о парамагнетизме).
Изначально материал демонстрировал все признаки парамагнетизма, но по мере того, как электронов в решетке становилось больше, он неожиданно стал ферромагнитным. Это было очень странно, потому что это произошло в тот момент, когда в каждом пустом месте решетки оказалось больше одного электрона. Это исключало возможность того, что ферромагнетизм вызван обменным взаимодействием — стандартным механизмом, который объясняет ферромагнетизм в большинстве материалов.
Ученые предложили альтернативный подход: когда в решетку попадает больше чем один электрон, они образуют пары, так называемые дублоны, которые могут перемещаться по всей решетке благодаря квантовому туннелированию. Однако электроны стремятся минимизировать кинетическую энергию, а для этого им нужно выровнять свои спины, формируя ферромагнетические свойства. Этот механизм, называемый кинетическим магнетизмом, был теоретически предсказан еще в 1960-х годах, но до сих пор не был обнаружен в твердых материалах.
Исследование предполагает перспективы для изучения и использования магнетизма на микроскопическом уровне. Оно также может иметь приложения в области квантовых технологий, таких как квантовые компьютеры и квантовая связь.
Ученые планируют подробнее исследовать явление, в том числе, можно ли его достичь при более высоких температурах. Ведь для этого эксперимента материал пришлось охладить до фракции чуть выше абсолютного нуля.
Мы все знакомы с магнетизмом по тому, как магниты держатся на холодильнике. Эти магниты имеют свойство, которое называется ферромагнетизмом. Это значит, что все электроны в материале направлены в одну сторону своими спинами. Спин — это квантовая характеристика, которая определяет магнитный момент. Но есть и другие типы магнетизма, например, парамагнетизм. Он слабее и появляется, когда спины электронов распределены случайно.
В работе, опубликованной в журнале Nature, ученые исследовали магнитные свойства так называемых муар-материалов. Это экспериментальные материалы, состоящие из двух слоев атомарно тонких кристаллов дисульфида вольфрама и диселенида молибдена, уложенных друг на друга под небольшим углом. Это создает решеточную структуру с пустыми местами, которые можно насытить электронами.
Муар-материалы представляют большой интерес для физиков, потому что они имеют уникальные свойства, которые не наблюдаются в отдельных листах или в объемных материалах. Например, в нихх могут возникать новые виды частиц, называемых квазичастицами, которые имитируют поведение элементарных частиц, таких как электроны, фотоны, фермионы и бозоны. Квазичастицы могут иметь различные заряды, массы, спины и другие характеристики, которые зависят от параметров решетки. Кроме того, в муар-материалах могут возникать новые виды взаимодействий между квазичастицами, которые определяют их физические свойства, такие как проводимость, сверхпроводимость, сверхтекучесть, магнетизм и т. д.
Чтобы проверить, какой вид магнетизма имеют исследуемые материалы, ученые сначала насытили их структуру электронами. Для этого они подавали электрический ток, постепенно увеличивая напряжение. Затем на поверхность материала направили луч лазера и зафиксировали, как меняется отраженный свет в зависимости от его поляризации. Это позволило выяснить, ориентированы ли спины электронов в одну сторону (что свидетельствует о ферромагнетизме) или в разные (что свидетельствует о парамагнетизме).
Изначально материал демонстрировал все признаки парамагнетизма, но по мере того, как электронов в решетке становилось больше, он неожиданно стал ферромагнитным. Это было очень странно, потому что это произошло в тот момент, когда в каждом пустом месте решетки оказалось больше одного электрона. Это исключало возможность того, что ферромагнетизм вызван обменным взаимодействием — стандартным механизмом, который объясняет ферромагнетизм в большинстве материалов.
Ученые предложили альтернативный подход: когда в решетку попадает больше чем один электрон, они образуют пары, так называемые дублоны, которые могут перемещаться по всей решетке благодаря квантовому туннелированию. Однако электроны стремятся минимизировать кинетическую энергию, а для этого им нужно выровнять свои спины, формируя ферромагнетические свойства. Этот механизм, называемый кинетическим магнетизмом, был теоретически предсказан еще в 1960-х годах, но до сих пор не был обнаружен в твердых материалах.
Исследование предполагает перспективы для изучения и использования магнетизма на микроскопическом уровне. Оно также может иметь приложения в области квантовых технологий, таких как квантовые компьютеры и квантовая связь.
Ученые планируют подробнее исследовать явление, в том числе, можно ли его достичь при более высоких температурах. Ведь для этого эксперимента материал пришлось охладить до фракции чуть выше абсолютного нуля.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Почему Китай так стремительно обгоняет США: Эксперт вскрыл секрет, который не замечал никто
Аналитик Дэн Ван уверен: если Запад не начнет срочно меняться, то он обречен перед Востоком...
Великий обман древности: итальянские ученые доказали, что историк соврал о гибели Помпей
Случайная надпись на стене перечеркнула официальную дату смерти города...
Роковая ошибка древних врачей: Почему современные ученые считают, что Александра Македонского похоронили заживо?
Он слышал плач своих полководцев и видел приготовления к бальзамированию, но не мог пошевелиться. Тело великого царя стало его собственным гробом...
Он все слышал, но не мог пошевелиться: Жуткая правда о том, почему тело Александра Македонского не разлагалось
Великий царь стал заложником собственной плоти. Диагноз, который поставили спустя 2300 лет, объясняет все: и «чудо» нетленности, и страшную смерть....
Новое исследование показало: Стоунхендж столетиями «водил за нос». Похоже, историю опять придется переписывать
Оказалось, что сенсация скрывалась в огромном круге, состоящем из загадочных шахт...
Почему Китай так стремительно обгоняет США: секрет, который не замечал никто. Часть 2
Уханьское метро, темная сторона инженерного государства и есть ли шансы у Штатов...
ЦРУ, море в пустыне и нефть: кто и зачем остановил проект Египта на 60 лет?
Часть вторая: Холодная война, 200 ядерных взрывов и 15 миллиардов, которые могут все изменить...
Египет хотел создать МОРЕ в пустыне Сахара: почему проект заморозили на 60 лет?
Часть первая: Реальный шанс спастись от всемирного потопа...
Российский ученый уверен, что максимально приблизился к разгадке тайны шаровой молнии
Похоже, наука ошибалась: это не плазменный сгусток, а «живой кристалл» из частиц-призраков...
Людовик XIV умер совсем не от гангрены: ученые сумели раскрыть истину лишь 310 лет спустя
Эксперты говорят: французский король был обречен. Медикам того времени была совершенно неизвестна его болезнь...
Алкогольная цивилизация: древние люди освоили земледелие... ради пива
Ученые давно подозревали это, а новые находки только подлили масла в огонь «пивной» версии...
Новый российский материал спасает от пожаров и взрывов аккумуляторов
Почему эксперты называют разработку сахалинских ученых настоящим прорывом в сохранении энергии?...