
Объединение квантовых и классических слоёв обеспечивает большую производительность нейронным сетям
Создание эффективных квантовых нейронных сетей является перспективным направлением исследований на стыке квантовых вычислений и машинного обучения. Команда из Terra Quantum AG разработала параллельную гибридную квантовую нейронную сеть и продемонстрировала, что их модель — мощный инструмент для квантового машинного обучения. Это исследование было опубликовано в журнале Intelligent Computing.
Гибридные квантовые нейронные сети обычно состоят из квантового слоя — вариационной квантовой схемы, и классического слоя — нейронной сети глубокого обучения, называемой многослойным персептроном. Подобная архитектура позволяет исследователям изучать сложные шаблоны и зависимости из входных данных гораздо легче, чем при традиционных методах машинного обучения.
Авторы статьи сосредоточились на параллельных гибридных квантовых нейронных сетях. В таких сетях квантовый и классический слои одновременно обрабатывают один и тот же вход и затем производят совместный вывод — линейную комбинацию выходов из обоих слоев.
Результаты обучения показывают, что параллельная гибридная сеть может превзойти по эффективности как ее квантовый, так и классический слой. Обученная на двух наборах данных с добавлением шума высокой частоты, гибридная модель показывает меньшие потери при обучении, предоставляет лучшие прогнозы и оказывается более приспособленной к сложным задачам.
Квантовый и классический слои оба вносят свой вклад в эффективное взаимодействие двух систем. Квантовый слой отображает гладкие периодические части, в то время как классический многослойный персептрон корректирует добавления шума. Успех параллельной гибридной сети зависит от настройки и коррекции темпа обучения и других параметров, таких как количество слоев и нейронов в каждом слое многослойного перцептрона.
Для увеличения количества выходных данных во время обучения вариационные квантовые схемы корректируют параметры квантовых вентилей, контролирующих состояние кубитов, а многослойные персептроны в основном настраивают силу связей, или так называемые веса, между нейронами.

Модель принимает входные данные и одновременно передает их в квантовый и классический слои для параллельной обработки, а затем объединяет выходные данные обоих слоев для получения окончательного результата.
Учитывая, что квантовые и классические слои обучаются с разной скоростью, исследователи изучили как соотношение вклада каждого слоя влияет на производительность гибридной модели и обнаружили, что корректировка темпа обучения важна для поддержания сбалансированного соотношения вкладов. Создание настраиваемого планировщика темпа обучения ляжет в основу будущих исследований, так как планировщик может улучшить скорость и производительность гибридной модели.
Новый подход представляет собой перспективное направление для дальнейших исследований в области квантового машинного обучения, и команде предстоит провести больше экспериментов для увеличения возможностей своей модели и ее применения в различных приложениях.
Гибридные квантовые нейронные сети обычно состоят из квантового слоя — вариационной квантовой схемы, и классического слоя — нейронной сети глубокого обучения, называемой многослойным персептроном. Подобная архитектура позволяет исследователям изучать сложные шаблоны и зависимости из входных данных гораздо легче, чем при традиционных методах машинного обучения.
Авторы статьи сосредоточились на параллельных гибридных квантовых нейронных сетях. В таких сетях квантовый и классический слои одновременно обрабатывают один и тот же вход и затем производят совместный вывод — линейную комбинацию выходов из обоих слоев.
Результаты обучения показывают, что параллельная гибридная сеть может превзойти по эффективности как ее квантовый, так и классический слой. Обученная на двух наборах данных с добавлением шума высокой частоты, гибридная модель показывает меньшие потери при обучении, предоставляет лучшие прогнозы и оказывается более приспособленной к сложным задачам.
Командная работа двух слоев персептрона
Квантовый и классический слои оба вносят свой вклад в эффективное взаимодействие двух систем. Квантовый слой отображает гладкие периодические части, в то время как классический многослойный персептрон корректирует добавления шума. Успех параллельной гибридной сети зависит от настройки и коррекции темпа обучения и других параметров, таких как количество слоев и нейронов в каждом слое многослойного перцептрона.
Для увеличения количества выходных данных во время обучения вариационные квантовые схемы корректируют параметры квантовых вентилей, контролирующих состояние кубитов, а многослойные персептроны в основном настраивают силу связей, или так называемые веса, между нейронами.

Модель принимает входные данные и одновременно передает их в квантовый и классический слои для параллельной обработки, а затем объединяет выходные данные обоих слоев для получения окончательного результата.
Учитывая, что квантовые и классические слои обучаются с разной скоростью, исследователи изучили как соотношение вклада каждого слоя влияет на производительность гибридной модели и обнаружили, что корректировка темпа обучения важна для поддержания сбалансированного соотношения вкладов. Создание настраиваемого планировщика темпа обучения ляжет в основу будущих исследований, так как планировщик может улучшить скорость и производительность гибридной модели.
Новый подход представляет собой перспективное направление для дальнейших исследований в области квантового машинного обучения, и команде предстоит провести больше экспериментов для увеличения возможностей своей модели и ее применения в различных приложениях.
- Алексей Павлов
- MO KORDZANGANEH ET AL.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Кролики-франкенштейны с щупальцами на голове «оккупируют» США
Специалисты предупреждают американцев: «Ни в коем случае не прикасайтесь к этим существам!»...

Специалисты предупреждают: ни в коем случае не ставьте MAX на личный телефон!
Рассказываем, почему навязываемый россиянам мессенджер удобен в первую очередь мошенникам...

26 ран и 750 лет молчания: Анализ ДНК раскрыл тайну очень жестокого убийства русского князя в Будапеште
Международная команда ученых сумела на 100% доказать личность погибшего...

Ученые наконец-то раскрыли тайну происхождения гигантских волн-убийц
Расследование продолжалось долгих 18 лет. Теперь о старых теориях можно навсегда забыть...

Ученые подтверждают: Человеческое сознание может перемещаться во времени
А интуиция — воспоминание о будущем. Это доказали секретные эксперименты в ЦРУ...

Работу самой мощной АЭС в Европе полностью парализовали… обычные медузы
Эксперты говорят: это очередное подтверждение того, что энергетика ЕС — это колосс на глиняных ногах...

Астрофизики были поражены, обнаружив «тоннель», соединяющий Солнечную систему с другими звездами
Исследователи из Института Макса Планка уверены: гигантская «транспортная сеть» охватывает всю нашу Галактику...