
Объединение квантовых и классических слоёв обеспечивает большую производительность нейронным сетям
Создание эффективных квантовых нейронных сетей является перспективным направлением исследований на стыке квантовых вычислений и машинного обучения. Команда из Terra Quantum AG разработала параллельную гибридную квантовую нейронную сеть и продемонстрировала, что их модель — мощный инструмент для квантового машинного обучения. Это исследование было опубликовано в журнале Intelligent Computing.
Гибридные квантовые нейронные сети обычно состоят из квантового слоя — вариационной квантовой схемы, и классического слоя — нейронной сети глубокого обучения, называемой многослойным персептроном. Подобная архитектура позволяет исследователям изучать сложные шаблоны и зависимости из входных данных гораздо легче, чем при традиционных методах машинного обучения.
Авторы статьи сосредоточились на параллельных гибридных квантовых нейронных сетях. В таких сетях квантовый и классический слои одновременно обрабатывают один и тот же вход и затем производят совместный вывод — линейную комбинацию выходов из обоих слоев.
Результаты обучения показывают, что параллельная гибридная сеть может превзойти по эффективности как ее квантовый, так и классический слой. Обученная на двух наборах данных с добавлением шума высокой частоты, гибридная модель показывает меньшие потери при обучении, предоставляет лучшие прогнозы и оказывается более приспособленной к сложным задачам.
Квантовый и классический слои оба вносят свой вклад в эффективное взаимодействие двух систем. Квантовый слой отображает гладкие периодические части, в то время как классический многослойный персептрон корректирует добавления шума. Успех параллельной гибридной сети зависит от настройки и коррекции темпа обучения и других параметров, таких как количество слоев и нейронов в каждом слое многослойного перцептрона.
Для увеличения количества выходных данных во время обучения вариационные квантовые схемы корректируют параметры квантовых вентилей, контролирующих состояние кубитов, а многослойные персептроны в основном настраивают силу связей, или так называемые веса, между нейронами.

Модель принимает входные данные и одновременно передает их в квантовый и классический слои для параллельной обработки, а затем объединяет выходные данные обоих слоев для получения окончательного результата.
Учитывая, что квантовые и классические слои обучаются с разной скоростью, исследователи изучили как соотношение вклада каждого слоя влияет на производительность гибридной модели и обнаружили, что корректировка темпа обучения важна для поддержания сбалансированного соотношения вкладов. Создание настраиваемого планировщика темпа обучения ляжет в основу будущих исследований, так как планировщик может улучшить скорость и производительность гибридной модели.
Новый подход представляет собой перспективное направление для дальнейших исследований в области квантового машинного обучения, и команде предстоит провести больше экспериментов для увеличения возможностей своей модели и ее применения в различных приложениях.
Гибридные квантовые нейронные сети обычно состоят из квантового слоя — вариационной квантовой схемы, и классического слоя — нейронной сети глубокого обучения, называемой многослойным персептроном. Подобная архитектура позволяет исследователям изучать сложные шаблоны и зависимости из входных данных гораздо легче, чем при традиционных методах машинного обучения.
Авторы статьи сосредоточились на параллельных гибридных квантовых нейронных сетях. В таких сетях квантовый и классический слои одновременно обрабатывают один и тот же вход и затем производят совместный вывод — линейную комбинацию выходов из обоих слоев.
Результаты обучения показывают, что параллельная гибридная сеть может превзойти по эффективности как ее квантовый, так и классический слой. Обученная на двух наборах данных с добавлением шума высокой частоты, гибридная модель показывает меньшие потери при обучении, предоставляет лучшие прогнозы и оказывается более приспособленной к сложным задачам.
Командная работа двух слоев персептрона
Квантовый и классический слои оба вносят свой вклад в эффективное взаимодействие двух систем. Квантовый слой отображает гладкие периодические части, в то время как классический многослойный персептрон корректирует добавления шума. Успех параллельной гибридной сети зависит от настройки и коррекции темпа обучения и других параметров, таких как количество слоев и нейронов в каждом слое многослойного перцептрона.
Для увеличения количества выходных данных во время обучения вариационные квантовые схемы корректируют параметры квантовых вентилей, контролирующих состояние кубитов, а многослойные персептроны в основном настраивают силу связей, или так называемые веса, между нейронами.

Модель принимает входные данные и одновременно передает их в квантовый и классический слои для параллельной обработки, а затем объединяет выходные данные обоих слоев для получения окончательного результата.
Учитывая, что квантовые и классические слои обучаются с разной скоростью, исследователи изучили как соотношение вклада каждого слоя влияет на производительность гибридной модели и обнаружили, что корректировка темпа обучения важна для поддержания сбалансированного соотношения вкладов. Создание настраиваемого планировщика темпа обучения ляжет в основу будущих исследований, так как планировщик может улучшить скорость и производительность гибридной модели.
Новый подход представляет собой перспективное направление для дальнейших исследований в области квантового машинного обучения, и команде предстоит провести больше экспериментов для увеличения возможностей своей модели и ее применения в различных приложениях.
- Алексей Павлов
- MO KORDZANGANEH ET AL.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Северное полушарие Земли стремительно темнеет. И это плохая новость для всех
Почему Россия находится в зоне особого риска и можно ли остановить этот процесс?...

Тайна необъяснимых северных кратеров разгадана спустя 11 лет после появления первого провала на Ямале
Почему российские ученые не рады своему открытию, называя его «русской рулеткой»?...

Генетики вычислили, какую страшную цену заплатили наши предки за высокий интеллект
Новое исследование еще раз доказало, что эволюция требует огромных жертв...

Ученые наконец-то раскрыли главную загадку града. Старая теория оказалась неверной
Поразительное открытие помогли сделать грозовые «отпечатки пальцев»...

Рядом с пирамидами Гизы обнаружены секретные тоннели, ведущие в забытый подземный мир
Быть может, их построили даже не египтяне. Но кто тогда?...

Почему на космическое ноу-хау «солнечный свет по запросу» ополчились астрономы всего мира?
Американский стартап обещает, что все будет хорошо, но ему никто не верит...

Наше тело — это… большой мозг: эксперимент русского ученого может совершить революцию в медицине
Эксперты говорят: «Открытие клеточной памяти — это огромный шаг к медицине, где лечение будет подбираться точно для конкретного человека»...

Секретная база в Гренландии, спрятанная 30-метровым слоем льда, угрожает всему миру
Гляциолог Уильям Колган говорит: «Американские военные думали, что это никогда не вскроется, но теперь...»...

Древние микробы спустя 40 000 лет освобождаются из вечной мерзлоты
Биологи уже бьют тревогу: оттаявшие микроорганизмы могут стать причиной следующей пандемии...

Астрофизики Гавайского университета неожиданно разгадали тайну… солнечного дождя
Рассказываем, почему новое открытие важно для каждого жителя Земли...

Как мадагаскарские лемуры ускоряют покорение космоса?
И почему именно эти животные оказались самые ценными для будущего всего человечества?...