Суператомный полупроводник: новое слово в электронике
Полупроводники — материалы, которые могут проводить электричество при определённых условиях. Они широко используются в электронных устройствах, таких как компьютеры, телефоны и солнечные панели. Однако полупроводники имеют свои ограничения: при передаче энергии и информации они теряют часть её в виде тепла и сталкиваются с сопротивлением от колебаний атомной решётки — фононов. Это означает, что полупроводники имеют предел скорости и эффективности.
В поисках лучших опций учёные обратили своё внимание на так называемые суператомные материалы. Это кластеры атомов, которые ведут себя как один большой атом с определёнными свойствами. Один из таких материалов — Re6Se8Cl2 — был недавно изучен командой химиков из Колумбийского университета. Они обнаружили, что этот материал является самым быстрым и эффективным полупроводником, который когда-либо был создан.
— профессор химии Милан Делор.
Особенность Re6Se8Cl2 заключается в том, что он образует квазичастицы, называемые экситонами. Это пары электронов и дырок, которые возникают при поглощении света полупроводником. Экситоны способны переносить энергию и информацию на большие расстояния без потерь. Однако в обычных полупроводниках экситоны быстро разрушаются под действием фононов. В Re6Se8Cl2 же экситоны связываются с фононами и образуют новые квазичастицы — акустические экситон-полароны.
Акустические экситон-полароны защищены от рассеяния фононов и могут двигаться по материалу почти без сопротивления. Учёные смогли прямо наблюдать за их транспортом в Re6Se8Cl2 при комнатной температуре и обнаружили, что они распространяются волнообразно на протяжении нескольких микрон и наносекунд. Это превосходит все известные полупроводники, включая кремний, по скорости и дальности передачи энергии.
Учёные предполагают, что необычные свойства Re6Se8Cl2 объясняются комбинацией двух факторов: квазиплоских электронных зон и сильного взаимодействия экситонов с акустическими фононами. Это открывает новый путь к созданию полупроводников, которые могут работать при высоких температурах и скоростях, что может привести к революции в электронике.
Одним из самых удивительных открытий, сделанных учёными при изучении Re6Se8Cl2, было то, что акустические экситон-поляроны могут перемещаться по материалу с невероятной скоростью и дальностью. По сравнению с электронами в кремнии, которые являются основой современной электроники, акустические экситон-поляроны были в два раза быстрее и могли пройти несколько микрометров за доли наносекунды. Это означает, что они могут переносить больше энергии и информации на большие расстояния без потерь.
Кроме того, учёные оценили, что акустические экситон-поляроны могут сохраняться в Re6Se8Cl2 около 11 наносекунд, что достаточно для того, чтобы пройти более 25 микрометров за один раз. Это значительно больше, чем в других полупроводниках, где экситоны быстро разрушаются под действием фононов. Таким образом, Re6Se8Cl2 может быть использован для создания более компактных и мощных электронных устройств.
Ещё одним преимуществом акустических экситон-поларонов является то, что они управляются светом, а не электрическим током. Это позволяет использовать оптические методы для генерации, модуляции и детектирования этих квазичастиц. Учёные предполагают, что это может привести к созданию полупроводниковых устройств, которые могут работать на скоростях порядка фемтосекунд, что на шесть порядков быстрее, чем наносекунды, доступные в современной гигагерцовой электронике. Это может открыть новые возможности для сверхбыстрой обработки данных и связи.
Re6Se8Cl2 не является единственным суператомным материалом, который привлекает внимание учёных. В Колумбийском университете исследуются и другие новые квантовые материалы, которые могут иметь интересные свойства. Одно из них — возможность очистки от тонких атомов, то есть отделения одного или нескольких слоёв материала от основы. Это позволяет менять толщину и структуру материала, а также смешивать его с другими совместимыми материалами для создания новых комбинаций и эффектов.
Однако Re6Se8Cl2 сталкивается с серьёзной проблемой, которая может помешать его практическому применению. Это высокая стоимость одного из его составляющих элементов — рения. Рений — один из самых редких и дорогих элементов на Земле, который используется в некоторых сплавах для авиации и космонавтики. Поэтому Re6Se8Cl2 вряд ли будет доступен для массового производства и коммерческого использования.
Несмотря на это, учёные не теряют надежды найти другие суператомные материалы, которые могут быть более дешёвыми и эффективными. Для этого они используют новую теорию, разработанную группой Беркельбаха, которая помогает предсказывать свойства суператомных материалов. Также они применяют сложный метод визуализации, созданный Тюлягом и группой Делора, который позволяет наблюдать за формированием и движением акустических экситон-поларонов в реальном времени. С помощью этих инструментов они надеются обнаружить новые рекорды скорости и эффективности в суператомной электронике.
В поисках лучших опций учёные обратили своё внимание на так называемые суператомные материалы. Это кластеры атомов, которые ведут себя как один большой атом с определёнными свойствами. Один из таких материалов — Re6Se8Cl2 — был недавно изучен командой химиков из Колумбийского университета. Они обнаружили, что этот материал является самым быстрым и эффективным полупроводником, который когда-либо был создан.
Это было противоположно тому, что мы ожидали. Вместо медленного движения, которое мы ожидали, мы увидели самую быструю вещь, которую когда-либо видели
— профессор химии Милан Делор.
Особенность Re6Se8Cl2 заключается в том, что он образует квазичастицы, называемые экситонами. Это пары электронов и дырок, которые возникают при поглощении света полупроводником. Экситоны способны переносить энергию и информацию на большие расстояния без потерь. Однако в обычных полупроводниках экситоны быстро разрушаются под действием фононов. В Re6Se8Cl2 же экситоны связываются с фононами и образуют новые квазичастицы — акустические экситон-полароны.
Акустические экситон-полароны защищены от рассеяния фононов и могут двигаться по материалу почти без сопротивления. Учёные смогли прямо наблюдать за их транспортом в Re6Se8Cl2 при комнатной температуре и обнаружили, что они распространяются волнообразно на протяжении нескольких микрон и наносекунд. Это превосходит все известные полупроводники, включая кремний, по скорости и дальности передачи энергии.
Учёные предполагают, что необычные свойства Re6Se8Cl2 объясняются комбинацией двух факторов: квазиплоских электронных зон и сильного взаимодействия экситонов с акустическими фононами. Это открывает новый путь к созданию полупроводников, которые могут работать при высоких температурах и скоростях, что может привести к революции в электронике.
Скорость и дальность акустических экситон-поларонов
Одним из самых удивительных открытий, сделанных учёными при изучении Re6Se8Cl2, было то, что акустические экситон-поляроны могут перемещаться по материалу с невероятной скоростью и дальностью. По сравнению с электронами в кремнии, которые являются основой современной электроники, акустические экситон-поляроны были в два раза быстрее и могли пройти несколько микрометров за доли наносекунды. Это означает, что они могут переносить больше энергии и информации на большие расстояния без потерь.
Кроме того, учёные оценили, что акустические экситон-поляроны могут сохраняться в Re6Se8Cl2 около 11 наносекунд, что достаточно для того, чтобы пройти более 25 микрометров за один раз. Это значительно больше, чем в других полупроводниках, где экситоны быстро разрушаются под действием фононов. Таким образом, Re6Se8Cl2 может быть использован для создания более компактных и мощных электронных устройств.
Ещё одним преимуществом акустических экситон-поларонов является то, что они управляются светом, а не электрическим током. Это позволяет использовать оптические методы для генерации, модуляции и детектирования этих квазичастиц. Учёные предполагают, что это может привести к созданию полупроводниковых устройств, которые могут работать на скоростях порядка фемтосекунд, что на шесть порядков быстрее, чем наносекунды, доступные в современной гигагерцовой электронике. Это может открыть новые возможности для сверхбыстрой обработки данных и связи.
Перспективы и проблемы суператомного полупроводника
Re6Se8Cl2 не является единственным суператомным материалом, который привлекает внимание учёных. В Колумбийском университете исследуются и другие новые квантовые материалы, которые могут иметь интересные свойства. Одно из них — возможность очистки от тонких атомов, то есть отделения одного или нескольких слоёв материала от основы. Это позволяет менять толщину и структуру материала, а также смешивать его с другими совместимыми материалами для создания новых комбинаций и эффектов.
Однако Re6Se8Cl2 сталкивается с серьёзной проблемой, которая может помешать его практическому применению. Это высокая стоимость одного из его составляющих элементов — рения. Рений — один из самых редких и дорогих элементов на Земле, который используется в некоторых сплавах для авиации и космонавтики. Поэтому Re6Se8Cl2 вряд ли будет доступен для массового производства и коммерческого использования.
Несмотря на это, учёные не теряют надежды найти другие суператомные материалы, которые могут быть более дешёвыми и эффективными. Для этого они используют новую теорию, разработанную группой Беркельбаха, которая помогает предсказывать свойства суператомных материалов. Также они применяют сложный метод визуализации, созданный Тюлягом и группой Делора, который позволяет наблюдать за формированием и движением акустических экситон-поларонов в реальном времени. С помощью этих инструментов они надеются обнаружить новые рекорды скорости и эффективности в суператомной электронике.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Как на ладони: Обнаружен морской гигант, который виден из космоса
Мегакоралл у Соломоновых островов оказался самым крупным животным Земли....
Спасти планету сможет… африканский червь
В Кении найдено насекомое с удивительными способностями....
Главная тайна Седьмой планеты разгадана через 38 лет
Уран оказался не таким уж странным, как думали ученые....
«Орешник», «Бук» и «Тополь»: искусный нейминг от российских военных конструкторов
Наука как сбить Запад с толку....
80 000 лет жизни: какие тайны скрывает самое древнее и большое существо на планете?
Залог невероятного долголетия и удивительного выживания обнаружили учёные....
Раскрыт секрет идеального женского тела?
Оказывается, дело вовсе не в соотношении талии и бедер....
Саблезубый котёнок томился во льдах Якутии 35 тысяч лет
Благодаря находке стало известно, что сородичи пушистика обитали в столь холодных местах....
Ученая вылечила свой рак вирусами собственного производства
Если человек хочет жить — медицина бессильна....
Носи умные очки или увольняйся!
Amazon планирует заставить всех курьеров носить этот электронный прибор....
Почти бессмертные существа помогут человечеству покорить глубокий космос
Ученым, наконец, удалось «взломать» код поразительной живучести тихоходок....
Разгадано учеными: почему города разрушают сердце и разум
Причины, которые нашли исследователи, вас удивят....
Турбулентность отменяется! А пилоты-люди вообще будут не нужны
Искусственный интеллект может в корне изменить авиацию....
Ещё один одинокий: в Балтийском море обнаружен дельфин, который может говорить только сам с собой
Совсем как старый вдовец, которого давно не навещали близкие....
Эти «красные монстры» вообще не должны существовать
Что узнали астрономы о трех невозможно огромных галактиках....
Надеялись на Беса: древние египтянки при беременности хлебали галлюциногенные смеси
Думали, что божок с двусмысленным для нас именем убережёт....
АД-контроль: новейшая разработка облегчит жизнь гипертоникам
Ультразвуковой пластырь будет следить за давлением нон-стоп....