Исследователи рассказали о том, как нейросети воспринимают действительность
Наши сенсорные системы очень хорошо распознают объекты, которые мы видим, или слова, которые слышим, даже если объекты перевернуты или речь произнесена неизвестным нам голосом. Вычислительные модели, такие как глубокие нейронные сети, могут быть обучены делать то же самое, например, правильно определяя изображение собаки, независимо от цвета ее шерсти, или распознавая речь, независимо от тембра голоса говорящего.
Тем не менее новое исследование нейробиологов из Массачусетского технологического института показало, что нейронные сети часто дают точно такой же ответ при обработке изображений или речи, которые не имеют никакого сходства с поставленными в задаче примерами.
Слева — изображение медведя, полученное естественным путём и переданное нейросети.
Справа — пример того, что модель определила как «медведь»
Считается, что человеческая сенсорная система учится игнорировать элементы, которые не имеют отношения к существенным признакам объекта. Человек способен создать инвариантное представление о классе объекта независимо от незначительных факторов, таких как уровень освещения или угол обзора.
—Джанелл Фезер, доктор философии Института Флэтайрон.
Исследователи задались вопросом, могут ли глубокие нейронные сети, обученные выполнять задачи классификации, развивать собственные инварианты? Чтобы попытаться ответить на этот вопрос, они использовали вычислительные модели для создания стимулов, производящих тот же тип ответа в модели, как и от стимулов, предоставленных исследователями.
Было обнаружено, что большинство изображений и звуков, созданных таким образом, выглядели и звучали совершенно не так, как примеры, которые модели получали изначально. Часть изображений была мешаниной случайно расположенных пикселей, а звуки напоминали неразборчивый шум.
—Джанелл Фезер.
Результаты исследования показывают, что модели каким-то образом разработали свои собственные инварианты. Это заставляет модели воспринимать пары стимулов как одинаковые, несмотря на их радикальные отличия для людей. Проблема может лежать в разнице между архитектурой глубоких нейронных сетей и человеческого мозга.
—Джош Макдермотт, доцент кафедры мозга и когнитивных наук Массачусетского технологического института.
Тем не менее новое исследование нейробиологов из Массачусетского технологического института показало, что нейронные сети часто дают точно такой же ответ при обработке изображений или речи, которые не имеют никакого сходства с поставленными в задаче примерами.
Слева — изображение медведя, полученное естественным путём и переданное нейросети.
Справа — пример того, что модель определила как «медведь»
Считается, что человеческая сенсорная система учится игнорировать элементы, которые не имеют отношения к существенным признакам объекта. Человек способен создать инвариантное представление о классе объекта независимо от незначительных факторов, таких как уровень освещения или угол обзора.
Традиционно считается, что сенсорные системы создают инварианты ко всем содержащимся в экземплярах одного объекта вариациям. Наш организм обязан установить, что мы наблюдаем или слышим одно и тоже, несмотря на незначительные различия.
—Джанелл Фезер, доктор философии Института Флэтайрон.
Исследователи задались вопросом, могут ли глубокие нейронные сети, обученные выполнять задачи классификации, развивать собственные инварианты? Чтобы попытаться ответить на этот вопрос, они использовали вычислительные модели для создания стимулов, производящих тот же тип ответа в модели, как и от стимулов, предоставленных исследователями.
Разница в восприятии
Было обнаружено, что большинство изображений и звуков, созданных таким образом, выглядели и звучали совершенно не так, как примеры, которые модели получали изначально. Часть изображений была мешаниной случайно расположенных пикселей, а звуки напоминали неразборчивый шум.
Результаты работы нейронных сетей вообще не узнаваемы для людей. Они не выглядят и не звучат естественно, и у них нет интерпретируемых характеристик, которые человек мог бы использовать для классификации объекта или слова.
—Джанелл Фезер.
Результаты исследования показывают, что модели каким-то образом разработали свои собственные инварианты. Это заставляет модели воспринимать пары стимулов как одинаковые, несмотря на их радикальные отличия для людей. Проблема может лежать в разнице между архитектурой глубоких нейронных сетей и человеческого мозга.
Мы думаем, что это интересное и полезное направление для дальнейших исследований. Двигаясь дальше мы сможем понять, какие аспекты нашего восприятия и обучения уникальны для нас как людей и что делает нас такими, как мы есть.
—Джош Макдермотт, доцент кафедры мозга и когнитивных наук Массачусетского технологического института.
- Алексей Павлов
- Массачусетский технологический институт
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Как на ладони: Обнаружен морской гигант, который виден из космоса
Мегакоралл у Соломоновых островов оказался самым крупным животным Земли....
Спасти планету сможет… африканский червь
В Кении найдено насекомое с удивительными способностями....
Забудьте всё, что вы знали о Луне
Новая теория предлагает в корне иное происхождение ночного светила....
Главная тайна Седьмой планеты разгадана через 38 лет
Уран оказался не таким уж странным, как думали ученые....
80 000 лет жизни: какие тайны скрывает самое древнее и большое существо на планете?
Залог невероятного долголетия и удивительного выживания обнаружили учёные....
«Орешник», «Бук» и «Тополь»: искусный нейминг от российских военных конструкторов
Наука как сбить Запад с толку....
Раскрыт секрет идеального женского тела?
Оказывается, дело вовсе не в соотношении талии и бедер....
Янтарь из недр Антарктиды раскрыл тайны тропических лесов
Застывшая смола возрастом 90 млн лет как часть исчезнувшей экосистемы....
Саблезубый котёнок томился во льдах Якутии 35 тысяч лет
Благодаря находке стало известно, что сородичи пушистика обитали в столь холодных местах....
Ученая вылечила свой рак вирусами собственного производства
Если человек хочет жить — медицина бессильна....
Носи умные очки или увольняйся!
Amazon планирует заставить всех курьеров носить этот электронный прибор....
Разгадано учеными: почему города разрушают сердце и разум
Причины, которые нашли исследователи, вас удивят....
Почти бессмертные существа помогут человечеству покорить глубокий космос
Ученым, наконец, удалось «взломать» код поразительной живучести тихоходок....
Турбулентность отменяется! А пилоты-люди вообще будут не нужны
Искусственный интеллект может в корне изменить авиацию....
Надеялись на Беса: древние египтянки при беременности хлебали галлюциногенные смеси
Думали, что божок с двусмысленным для нас именем убережёт....
Чудо в перьях: Робот-голубь «упорхнёт» от радиолокации
Изобретение грозит новой гонкой вооружений....