Негативные «ретвиты», похоже, укрепляют теории заговора о мошенничестве на выборах
Группа учёных-бихевиористов, использующая большие данные и симуляционную модель для анализа «твитов» в социальных сетях в период президентских выборов 2020 года в США, обнаружила, что распространению теорий заговора о мошенничестве на выборах в Твиттере (теперь называемом X) способствовала предвзятость негатива. Результаты исследования под руководством Мэйсона Янгблада, доктора философии, научного сотрудника Института перспективных вычислительных наук Университета Стоуни-Брук, опубликованы в журнале Humanities and Social Sciences Communications.
Исследователи смоделировали поведение около 350 000 реальных пользователей Twitter. Они обнаружили, что шаблоны обмена примерно 4 миллионами твитов о фальсификациях на выборах согласуются с тем, что люди с гораздо большей вероятностью ретвитят посты в социальных сетях, которые содержат более сильные негативные эмоции.
Распределение ретвитов в результате соответствия, антиконформности, содержания и влияния подписчиков с использованием этого ABM (по 100 итераций каждая), наряду с наблюдаемым распределением ретвитов (черным цветом). Все предвзятости были смоделированы с g 0,25 и следующими значениями параметров: a = 1,4 (предвзятость соответствия), a = 0,6 (предвзятость антисогласия), c = 1 (предвзятость контента) и d = 1 (влияние подписчиков). Ось X — это идентификатор каждого твита, ранжированный по убыванию количества ретвитов, а ось Y показывает количество ретвитов каждого из этих твитов. Обе оси были логарифмически преобразованы.
Данные для их исследования были взяты из набора данных VoterFraud2020, собранного в период с 23 октября по 16 декабря 2020 года. Этот набор данных включает 7,6 миллиона твитов и 25,6 миллиона ретвитов, которые были собраны в режиме реального времени с использованием программного интерфейса потоковой передачи X в соответствии с установленными правилами для этичного использования данных из социальных сетей.
— Мэйсон Янгблад.
Учитывая это, команда провела моделирование того, как отдельные пользователи пишут и ретвитят друг друга в Твиттере с разными уровнями и формами когнитивной предвзятости, и сравнила полученные результаты с реальными моделями поведения ретвитов среди сторонников теорий заговора с мошенничеством на выборах во время и вокруг выборов.
— Мэйсон Янгблад.
С помощью моделирования и численного анализа Янгблад и его коллеги обнаружили, что полученные результаты согласуются с предыдущими исследованиями других авторов, предполагающими, что эмоционально негативный контент имеет преимущество в социальных сетях в различных областях, включая освещение новостей и политический дискурс.
Модель также показала, что, хотя негативные твиты с большей вероятностью ретвитировались, твиты с цитатами, как правило, были более умеренными, чем оригинальные, поскольку люди, как правило, не усиливали негатив, комментируя что-либо.
Янгблад считает, что, поскольку модель, основанная на симуляции, достаточно хорошо воссоздает закономерности в реальных данных, она потенциально может быть полезна для моделирования мер против дезинформации в будущем. Модель можно использовать для создания инструментов, используя которые компании или политики могут попытаться ограничить распространение информации, например, снизить скорость попадания твитов в новостные ленты.
Исследователи смоделировали поведение около 350 000 реальных пользователей Twitter. Они обнаружили, что шаблоны обмена примерно 4 миллионами твитов о фальсификациях на выборах согласуются с тем, что люди с гораздо большей вероятностью ретвитят посты в социальных сетях, которые содержат более сильные негативные эмоции.
Распределение ретвитов в результате соответствия, антиконформности, содержания и влияния подписчиков с использованием этого ABM (по 100 итераций каждая), наряду с наблюдаемым распределением ретвитов (черным цветом). Все предвзятости были смоделированы с g 0,25 и следующими значениями параметров: a = 1,4 (предвзятость соответствия), a = 0,6 (предвзятость антисогласия), c = 1 (предвзятость контента) и d = 1 (влияние подписчиков). Ось X — это идентификатор каждого твита, ранжированный по убыванию количества ретвитов, а ось Y показывает количество ретвитов каждого из этих твитов. Обе оси были логарифмически преобразованы.
Данные для их исследования были взяты из набора данных VoterFraud2020, собранного в период с 23 октября по 16 декабря 2020 года. Этот набор данных включает 7,6 миллиона твитов и 25,6 миллиона ретвитов, которые были собраны в режиме реального времени с использованием программного интерфейса потоковой передачи X в соответствии с установленными правилами для этичного использования данных из социальных сетей.
Теории заговора о крупномасштабных фальсификациях на выборах широко и быстро распространились в Твиттере во время президентских выборов в США в 2020 году, но неясно, какие процессы ответственны за их распространение
— Мэйсон Янгблад.
Учитывая это, команда провела моделирование того, как отдельные пользователи пишут и ретвитят друг друга в Твиттере с разными уровнями и формами когнитивной предвзятости, и сравнила полученные результаты с реальными моделями поведения ретвитов среди сторонников теорий заговора с мошенничеством на выборах во время и вокруг выборов.
Наши результаты показывают, что распространение сообщений о мошенничестве на выборах в Твиттере было вызвано предвзятостью к твитам с более негативными эмоциями, и это имеет важные последствия для текущих дебатов о том, как противостоять распространению теорий заговора и дезинформации в социальных сетях
— Мэйсон Янгблад.
С помощью моделирования и численного анализа Янгблад и его коллеги обнаружили, что полученные результаты согласуются с предыдущими исследованиями других авторов, предполагающими, что эмоционально негативный контент имеет преимущество в социальных сетях в различных областях, включая освещение новостей и политический дискурс.
Модель также показала, что, хотя негативные твиты с большей вероятностью ретвитировались, твиты с цитатами, как правило, были более умеренными, чем оригинальные, поскольку люди, как правило, не усиливали негатив, комментируя что-либо.
Янгблад считает, что, поскольку модель, основанная на симуляции, достаточно хорошо воссоздает закономерности в реальных данных, она потенциально может быть полезна для моделирования мер против дезинформации в будущем. Модель можно использовать для создания инструментов, используя которые компании или политики могут попытаться ограничить распространение информации, например, снизить скорость попадания твитов в новостные ленты.
- Алексей Павлов
- Humanities and Social Sciences Communications
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Российские ученые «поймали за руку» Илона Маска
Они доказали, что его ракеты пробивают дыры в атмосфере....
«Титаник» разваливается прямо на глазах
Кто же ускоряет гибель легендарного корабля: люди или природа?...
Западная Европа и США готовятся к худшему
Новая угроза ожидается из Латинской Америки....
NASA обнаружило таинственное энергетическое поле вокруг Земли
Оно уникально, и, похоже, благодаря нему на планете… появилась жизнь....
Спасение человечества находится на дне Северного Ледовитого океана
Финские ученые уверены в этом на 100%....
Starliner Boeing снова в новостях: теперь там что-то жутко стучит и лязгает
NASA придумывает объяснения, а бывший командир МКС говорит, что это не к добру....
Космический корабль BepiColombo невероятно близко подлетел к Меркурию
Свежие снимки рябой планеты удалось сделать благодаря возникшим в полёте неполадкам....
Прорыв или кошмар? Искусственный интеллект стал изменять собственный код
Ученые говорят: ничего страшного. Но так ли это на самом деле?...
Форресты Гампы отменяются
Американские ученые «взломали» код аутизма....
Сосуд из найденного в Шотландии клада викингов оказался иранским
Никто не ожидал, что сокровище прибыло из столь отдаленных мест....
Азиаты оккупируют Британию: сначала мигранты, теперь желтоногие шершни
Экологи бьют тревогу и массово рассылают методички населению....
Безглазая смерть чует тьму: как именно грибок превращает мух в зомби-некрофилов
Главное случается ночью....
Новый метод поможет раскрыть секс-преступления во много раз быстрее
Открытие ускорит проверку улик....
Пандемия может повториться: эксперты бьют тревогу
По словам ученых, на зверофермах Китая творятся ужасные вещи....
Роботы и 3D-печать сделали бетон прочнее благодаря особой структуре
Имитируя природу, бетон можно уложить так, чтобы повысить прочность на 63%....
Компания 1X анонсировала повседневного помощника — гуманоидного робота NEO Beta
Похожий на человека механический слуга умеет ходить, бегать и подниматься по лестнице....