
Негативные «ретвиты», похоже, укрепляют теории заговора о мошенничестве на выборах
Группа учёных-бихевиористов, использующая большие данные и симуляционную модель для анализа «твитов» в социальных сетях в период президентских выборов 2020 года в США, обнаружила, что распространению теорий заговора о мошенничестве на выборах в Твиттере (теперь называемом X) способствовала предвзятость негатива. Результаты исследования под руководством Мэйсона Янгблада, доктора философии, научного сотрудника Института перспективных вычислительных наук Университета Стоуни-Брук, опубликованы в журнале Humanities and Social Sciences Communications.
Исследователи смоделировали поведение около 350 000 реальных пользователей Twitter. Они обнаружили, что шаблоны обмена примерно 4 миллионами твитов о фальсификациях на выборах согласуются с тем, что люди с гораздо большей вероятностью ретвитят посты в социальных сетях, которые содержат более сильные негативные эмоции.

Распределение ретвитов в результате соответствия, антиконформности, содержания и влияния подписчиков с использованием этого ABM (по 100 итераций каждая), наряду с наблюдаемым распределением ретвитов (черным цветом). Все предвзятости были смоделированы с g 0,25 и следующими значениями параметров: a = 1,4 (предвзятость соответствия), a = 0,6 (предвзятость антисогласия), c = 1 (предвзятость контента) и d = 1 (влияние подписчиков). Ось X — это идентификатор каждого твита, ранжированный по убыванию количества ретвитов, а ось Y показывает количество ретвитов каждого из этих твитов. Обе оси были логарифмически преобразованы.
Данные для их исследования были взяты из набора данных VoterFraud2020, собранного в период с 23 октября по 16 декабря 2020 года. Этот набор данных включает 7,6 миллиона твитов и 25,6 миллиона ретвитов, которые были собраны в режиме реального времени с использованием программного интерфейса потоковой передачи X в соответствии с установленными правилами для этичного использования данных из социальных сетей.
— Мэйсон Янгблад.
Учитывая это, команда провела моделирование того, как отдельные пользователи пишут и ретвитят друг друга в Твиттере с разными уровнями и формами когнитивной предвзятости, и сравнила полученные результаты с реальными моделями поведения ретвитов среди сторонников теорий заговора с мошенничеством на выборах во время и вокруг выборов.
— Мэйсон Янгблад.
С помощью моделирования и численного анализа Янгблад и его коллеги обнаружили, что полученные результаты согласуются с предыдущими исследованиями других авторов, предполагающими, что эмоционально негативный контент имеет преимущество в социальных сетях в различных областях, включая освещение новостей и политический дискурс.
Модель также показала, что, хотя негативные твиты с большей вероятностью ретвитировались, твиты с цитатами, как правило, были более умеренными, чем оригинальные, поскольку люди, как правило, не усиливали негатив, комментируя что-либо.
Янгблад считает, что, поскольку модель, основанная на симуляции, достаточно хорошо воссоздает закономерности в реальных данных, она потенциально может быть полезна для моделирования мер против дезинформации в будущем. Модель можно использовать для создания инструментов, используя которые компании или политики могут попытаться ограничить распространение информации, например, снизить скорость попадания твитов в новостные ленты.
Исследователи смоделировали поведение около 350 000 реальных пользователей Twitter. Они обнаружили, что шаблоны обмена примерно 4 миллионами твитов о фальсификациях на выборах согласуются с тем, что люди с гораздо большей вероятностью ретвитят посты в социальных сетях, которые содержат более сильные негативные эмоции.

Распределение ретвитов в результате соответствия, антиконформности, содержания и влияния подписчиков с использованием этого ABM (по 100 итераций каждая), наряду с наблюдаемым распределением ретвитов (черным цветом). Все предвзятости были смоделированы с g 0,25 и следующими значениями параметров: a = 1,4 (предвзятость соответствия), a = 0,6 (предвзятость антисогласия), c = 1 (предвзятость контента) и d = 1 (влияние подписчиков). Ось X — это идентификатор каждого твита, ранжированный по убыванию количества ретвитов, а ось Y показывает количество ретвитов каждого из этих твитов. Обе оси были логарифмически преобразованы.
Данные для их исследования были взяты из набора данных VoterFraud2020, собранного в период с 23 октября по 16 декабря 2020 года. Этот набор данных включает 7,6 миллиона твитов и 25,6 миллиона ретвитов, которые были собраны в режиме реального времени с использованием программного интерфейса потоковой передачи X в соответствии с установленными правилами для этичного использования данных из социальных сетей.
Теории заговора о крупномасштабных фальсификациях на выборах широко и быстро распространились в Твиттере во время президентских выборов в США в 2020 году, но неясно, какие процессы ответственны за их распространение
— Мэйсон Янгблад.
Учитывая это, команда провела моделирование того, как отдельные пользователи пишут и ретвитят друг друга в Твиттере с разными уровнями и формами когнитивной предвзятости, и сравнила полученные результаты с реальными моделями поведения ретвитов среди сторонников теорий заговора с мошенничеством на выборах во время и вокруг выборов.
Наши результаты показывают, что распространение сообщений о мошенничестве на выборах в Твиттере было вызвано предвзятостью к твитам с более негативными эмоциями, и это имеет важные последствия для текущих дебатов о том, как противостоять распространению теорий заговора и дезинформации в социальных сетях
— Мэйсон Янгблад.
С помощью моделирования и численного анализа Янгблад и его коллеги обнаружили, что полученные результаты согласуются с предыдущими исследованиями других авторов, предполагающими, что эмоционально негативный контент имеет преимущество в социальных сетях в различных областях, включая освещение новостей и политический дискурс.
Модель также показала, что, хотя негативные твиты с большей вероятностью ретвитировались, твиты с цитатами, как правило, были более умеренными, чем оригинальные, поскольку люди, как правило, не усиливали негатив, комментируя что-либо.
Янгблад считает, что, поскольку модель, основанная на симуляции, достаточно хорошо воссоздает закономерности в реальных данных, она потенциально может быть полезна для моделирования мер против дезинформации в будущем. Модель можно использовать для создания инструментов, используя которые компании или политики могут попытаться ограничить распространение информации, например, снизить скорость попадания твитов в новостные ленты.
- Алексей Павлов
- Humanities and Social Sciences Communications
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Планшет, пролежавший в Темзе пять лет, помог раскрыть серию запутанных преступлений
Эксперты говорят: даже вода не смогла стереть цифровые следы....

Учёные говорят, что обнаружили огромный тайный город под египетскими пирамидами
Проверять пока не разрешили....

«Инопланетяне» на Земле? Древние 8-метровые «грибы» оказались совершенно неизвестной формой жизни
Вот уже 180 лет подряд живые «башни» ставят в тупик всю науку....

«Шерстистый дьявол» обнаружен в пустыне, на границе Мексики и США
Ученые говорят: такой уникальной находки не было последние полвека....

Похоже, что проблема космического мусора в скором времени будет решена раз и навсегда
Новая технология не только очистит космос, но и поможет спутникам работать втрое дольше....

Американские спецслужбы скрывают правду о самой древней из библейских реликвий?
Экстрасенс ЦРУ предупредил: Ковчег Завета убьет каждого, кто к нему прикоснется....

Почему мы не помним себя младенцами? Новое исследование дало ответы
Возможно, помним, но «ларчик» заперт....

Археологи ликуют: в Испании нашли рисунки, которые старше человечества!
200 000-летняя находка заставит пересмотреть учебники....

Астрофизики рассказали, почему Вселенная замедляется вопреки предсказаниям Эйнштейна
Если открытие DESI и ослабление темной энергии подтвердится, учебники придется переписать....

Ученые поражены: мыши, как спасатели, оживляют своих сородичей, попавших в беду
Открытие, от которого дрогнет даже самое черствое сердце....

Кислород устарел! Ученые нашли новый ключ к внеземной жизни
Гицеанические миры могут стать новой надеждой астрофизиков....

На 100 000 лет раньше людей: ученые рассказали, кто устроил первые похороны на планете
Загадочные карлики Homo naledi, чей мозг был размером с апельсин, оказались не глупее нас с вами....

Секретная мутация гена: оказалось, ее имеют все обитатели Марианской впадины
Поразительное открытие китайских ученых может изменить всю теорию эволюции....

10 лет за 48 часов: ИИ полностью переиграл ученых в поисках секрета супербактерий
Однако эксперты предупреждают: нейросети не только ускоряют науку, они запросто могут столкнуть нас в пропасть....

Скрытые миллиарды: население Земли оказалось гораздо больше, чем считалось
Новые исследования бросают вызов официальным демографическим данным....

Ученый рассказал, как использовались загадочные артефакты из гробницы Тутанхамона
Это было как в фильме «Мумия»: «Фараон должен воскреснуть!»...