
Ученые разработали сверхстабильную Zn-Mn батарею с высокой плотностью энергии
Научная команда под руководством профессора Яна Лифэна из Университета науки и технологии Китая (USTC) Китайской академии наук (CAS) разработала водный наномицеллярный электролит с использованием метила мочевины (Mu). Результаты исследования были опубликованы в журнале Journal of the American Chemical Society.
Водные цинковые ионные батареи (AZIBs) являются конкурентоспособными кандидатами для хранения чистой энергии, но они серьезно ограничены необратимой электрохимической реакцией цинкового анода. Поэтому важной задачей является исследование того, как регулировать электрохимическую производительность AZIBs с помощью оптимизации дизайна электролита.
В этой статье исследователи предложили уникальный дизайн наномицеллярного электролита, который состоит из ZnSO4, MnSO4 и высокой концентрации молекул Mu посредством стратегии самосборки, где водно-растворительная среда разделяется на гидрофильные и гидрофобные области, а катионы и анионы инкапсулируются в нанодомены. Нанокластеры блокировали последовательную водную сеть водородных связей, нарушая сеть водородных связей между молекулами воды и перестраивая локализованные водородные связи внутри мицелл и на границе мицелла/интерфейса.
Кроме того, молекулы Mu были вовлечены в структуру растворительной оболочки ионов Zn2+/Mn2+, тем самым подавляя реакцию разложения воды. Ионы Zn2+/Mn2+ могут быть контролируемо высвобождены из мицеллярных кластеров, диффундировать в трехмерном режиме диффузии и равномерно осаждаться на поверхности электрода.
Исследователи также предложили новый защитный слой твердого электролита (SEI), Znx (Mu)ySO4∙nH2O, который также образовывался на поверхности цинкового анода, чтобы избежать коррозии цинка, вызванной проникновением молекул воды.
Результаты различных испытаний показывают, что карбонильные группы и на Zn2+/Mn2+ и Mu молекул имеют более сильную связующую способность и способны уменьшить количество молекул воды в структуре растворительной оболочки. Благодаря перестройке водородных связей внутри мицеллярного электролита, высокообратимые двухэлектронные переходные реакции были подтверждены сканирующей электронной микроскопией, рентгеновской дифракцией, Рамановской спектроскопией, рентгеновской флуоресценцией и другими методами испытаний в различных состояниях заряда.
Цинк-марганцевые батареи, использующие двухэлектронную реакцию, показывают беспрецедентно высокую энергетическую плотность 800,4 Вт·ч/кг (на основе активного материала катода) и напряжение разряда до 1,87 В.
Эта работа обновляет предыдущее понимание непрерывной фазы растворителя электролита и устанавливает локальную/межфазную сеть взаимодействия, которая эффективно поддерживает трехмерную диффузионную форму ионов и благоприятную межфазную реакцию нуклеации, достигая эффективного подавления металлических дендритов и побочных реакций на электроде.
Такой дизайн ультрастабильной, высокоэнергетической цинк-марганцевой батареи является прорывом в области хранения энергии и может иметь широкое применение в различных отраслях, таких как электромобили, смарт-гриды и возобновляемые источники энергии. Это также демонстрирует потенциал использования наномицеллярных электролитов для других типов аккумуляторов, таких как литий-ионные, натрий-ионные и алюминий-ионные.
Водные цинковые ионные батареи (AZIBs) являются конкурентоспособными кандидатами для хранения чистой энергии, но они серьезно ограничены необратимой электрохимической реакцией цинкового анода. Поэтому важной задачей является исследование того, как регулировать электрохимическую производительность AZIBs с помощью оптимизации дизайна электролита.
В этой статье исследователи предложили уникальный дизайн наномицеллярного электролита, который состоит из ZnSO4, MnSO4 и высокой концентрации молекул Mu посредством стратегии самосборки, где водно-растворительная среда разделяется на гидрофильные и гидрофобные области, а катионы и анионы инкапсулируются в нанодомены. Нанокластеры блокировали последовательную водную сеть водородных связей, нарушая сеть водородных связей между молекулами воды и перестраивая локализованные водородные связи внутри мицелл и на границе мицелла/интерфейса.
Кроме того, молекулы Mu были вовлечены в структуру растворительной оболочки ионов Zn2+/Mn2+, тем самым подавляя реакцию разложения воды. Ионы Zn2+/Mn2+ могут быть контролируемо высвобождены из мицеллярных кластеров, диффундировать в трехмерном режиме диффузии и равномерно осаждаться на поверхности электрода.
Исследователи также предложили новый защитный слой твердого электролита (SEI), Znx (Mu)ySO4∙nH2O, который также образовывался на поверхности цинкового анода, чтобы избежать коррозии цинка, вызванной проникновением молекул воды.
Результаты различных испытаний показывают, что карбонильные группы и на Zn2+/Mn2+ и Mu молекул имеют более сильную связующую способность и способны уменьшить количество молекул воды в структуре растворительной оболочки. Благодаря перестройке водородных связей внутри мицеллярного электролита, высокообратимые двухэлектронные переходные реакции были подтверждены сканирующей электронной микроскопией, рентгеновской дифракцией, Рамановской спектроскопией, рентгеновской флуоресценцией и другими методами испытаний в различных состояниях заряда.
Цинк-марганцевые батареи, использующие двухэлектронную реакцию, показывают беспрецедентно высокую энергетическую плотность 800,4 Вт·ч/кг (на основе активного материала катода) и напряжение разряда до 1,87 В.
Эта работа обновляет предыдущее понимание непрерывной фазы растворителя электролита и устанавливает локальную/межфазную сеть взаимодействия, которая эффективно поддерживает трехмерную диффузионную форму ионов и благоприятную межфазную реакцию нуклеации, достигая эффективного подавления металлических дендритов и побочных реакций на электроде.
Такой дизайн ультрастабильной, высокоэнергетической цинк-марганцевой батареи является прорывом в области хранения энергии и может иметь широкое применение в различных отраслях, таких как электромобили, смарт-гриды и возобновляемые источники энергии. Это также демонстрирует потенциал использования наномицеллярных электролитов для других типов аккумуляторов, таких как литий-ионные, натрий-ионные и алюминий-ионные.
- Алексей Павлов
- University of Science and Technology of China
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Тайна необъяснимых северных кратеров разгадана спустя 11 лет после появления первого провала на Ямале
Почему российские ученые не рады своему открытию, называя его «русской рулеткой»?...

Турецкие археологи обнаружили затерянный мост, способный переписать всю раннюю историю человечества
Оказалось, что научная сенсация все это время... валялась у ученых буквально под ногами...

Секретная база в Гренландии, спрятанная 30-метровым слоем льда, угрожает всему миру
Гляциолог Уильям Колган говорит: «Американские военные думали, что это никогда не вскроется, но теперь...»...

В Антарктиде обнаружен метановый «спящий гигант», который очень быстро просыпается. И это плохая новость
Ученые в тревоге задаются вопросом: означают ли десятки газовых гейзеров под водой, что эффект домино уже запущен?...

Рядом с пирамидами Гизы обнаружены секретные тоннели, ведущие в забытый подземный мир
Быть может, их построили даже не египтяне. Но кто тогда?...

В самом большом кратере Луны происходит что-то очень странное
Поэтому астронавты планируют туда заглянуть в самое ближайшее время...

Наше тело — это… большой мозг: эксперимент русского ученого может совершить революцию в медицине
Эксперты говорят: «Открытие клеточной памяти — это огромный шаг к медицине, где лечение будет подбираться точно для конкретного человека»...

Археологи поражены: 404 тысячи лет назад «римляне» спокойно разделали гигантского слона... 3-сантиметровыми ножичками
Получается, что древние охотники могли справиться с самым большим животным в Европе буквально голыми руками?...

Ученые выяснили: в каком возрасте наш мозг достигает пика своей активности
Почему же 20-30 лет оказались стереотипом, далеким от реальной жизни?...

«Черный ящик» раскрыл тайну летучей мыши, пожирающей птиц прямо в полете
Ученые совершенно не ожидали, что рукокрылый властелин ночного неба по свирепости и охотничьему мастерству даст фору даже соколам...

Астрофизики Гавайского университета неожиданно разгадали тайну… солнечного дождя
Рассказываем, почему новое открытие важно для каждого жителя Земли...

Как мадагаскарские лемуры ускоряют покорение космоса?
И почему именно эти животные оказались самые ценными для будущего всего человечества?...

Мог ли великий художник Клод Моне видеть в ультрафиолетовом спектре, как пчела?
Историки уверены: после операции на глазах с французским живописцем стали происходит очень странные вещи...