
Магия света: крошечные кристаллы, обладающие невероятной силой
Ученые представили миру необычный материал: крошечные органические кристаллы могут превращать свет в механическую силу. А еще удивительно, что этот фотомеханический материал способен поднимать предметы, вес которых в 10 000 раз превышает его собственный. И самое главное — вся эта мощь обходится без использования тепла или электричества.
Фотомеханические материалы созданы для того, чтобы свет превращался непосредственно в движение. Это — результат сложного взаимодействия физики, химии, оптики и других наук. Фотомеханические приводы, в основе которых лежит управление освещением, пользуются все большей популярностью.
Исследователи из Университета Колорадо в Боулдере совершили небывалый прорыв в разработке таких приводов. Новый материал представляет собой крошечные органические кристаллы, которые могут исполнять настоящие чудеса. Они способны гнуться и поднимать предметы гораздо тяжелее самого себя. Перспективы практического применения такого материала невероятны.
Сочетание фотохимии, химии полимеров, физики и механики в фотомеханическом материале позволяет генерировать механический отклик на молекулярном уровне. До недавнего времени это требовало организации особых условий, чтобы молекулы двигались в нужном направлении. Обычно для этого использовались жидкие кристаллические полимеры или упорядоченные молекулярные кристаллы.
Однако ранее разработанные фотомеханические материалы имели свои ограничения. Они использовали кристаллические твердые вещества, которые меняли свою форму в ответ на фотохимическую реакцию. Но эти материалы часто трескались под воздействием света и не могли служить полностью функциональными приводами. Именно эти проблемы решили ученые из Университета Колорадо.
Они использовали вместо крупных кристаллов массивы крошечных органических кристаллов. Кристаллы получили из диаритена и внедрили в полимерный материал с порами размером с микрон. Это решение стало настоящим прорывом.
Кристаллы вырастали внутри пор, что сделало их прочнее и повысило производство энергии при воздействии света. Поры защищали кристаллы от трещин при освещении. Композитный материал можно сгибать без ущерба для его фотомеханических свойств — он способен выдержать изгиб до 180° и оставаться работоспособным. Кристаллы также позволяют преобразовывать свет в механическую работу без использования тепла и электричества.
Изучая возможности фотомеханических кристаллов, исследователи провели эксперименты, связанные с поднятием тяжестей, чтобы проверить их работоспособность. И результаты оказались поразительными. Кристаллическая матрица весом всего 0,02 мг смогла поднять нейлоновый шарик весом 20 мг. Это великолепное достижение, поскольку вес шарика в 10 000 раз превышает вес кристаллической матрицы.
— руководитель исследовательской группы, Райан Хейворд.
Разработчики считают, что изобретенный ими фотомеханический материал обладает огромным потенциалом и может быть использован во многих областях. Например, он может заменить электроприводы в роботах и транспортных средствах или стать альтернативой громоздким батареям для питания дронов с помощью лазеров. Однако у ученых еще остается много работы, чтобы довести свою разработку до совершенства. Они хотят получить больший контроль над движением материала и повысить его эффективность. Исследование было опубликовано в журнале Nature Materials.
Фотомеханические материалы созданы для того, чтобы свет превращался непосредственно в движение. Это — результат сложного взаимодействия физики, химии, оптики и других наук. Фотомеханические приводы, в основе которых лежит управление освещением, пользуются все большей популярностью.
Исследователи из Университета Колорадо в Боулдере совершили небывалый прорыв в разработке таких приводов. Новый материал представляет собой крошечные органические кристаллы, которые могут исполнять настоящие чудеса. Они способны гнуться и поднимать предметы гораздо тяжелее самого себя. Перспективы практического применения такого материала невероятны.
Сочетание фотохимии, химии полимеров, физики и механики в фотомеханическом материале позволяет генерировать механический отклик на молекулярном уровне. До недавнего времени это требовало организации особых условий, чтобы молекулы двигались в нужном направлении. Обычно для этого использовались жидкие кристаллические полимеры или упорядоченные молекулярные кристаллы.
Однако ранее разработанные фотомеханические материалы имели свои ограничения. Они использовали кристаллические твердые вещества, которые меняли свою форму в ответ на фотохимическую реакцию. Но эти материалы часто трескались под воздействием света и не могли служить полностью функциональными приводами. Именно эти проблемы решили ученые из Университета Колорадо.
Они использовали вместо крупных кристаллов массивы крошечных органических кристаллов. Кристаллы получили из диаритена и внедрили в полимерный материал с порами размером с микрон. Это решение стало настоящим прорывом.
Кристаллы вырастали внутри пор, что сделало их прочнее и повысило производство энергии при воздействии света. Поры защищали кристаллы от трещин при освещении. Композитный материал можно сгибать без ущерба для его фотомеханических свойств — он способен выдержать изгиб до 180° и оставаться работоспособным. Кристаллы также позволяют преобразовывать свет в механическую работу без использования тепла и электричества.
Изучая возможности фотомеханических кристаллов, исследователи провели эксперименты, связанные с поднятием тяжестей, чтобы проверить их работоспособность. И результаты оказались поразительными. Кристаллическая матрица весом всего 0,02 мг смогла поднять нейлоновый шарик весом 20 мг. Это великолепное достижение, поскольку вес шарика в 10 000 раз превышает вес кристаллической матрицы.
Эти новые приводы явно превосходят все ожидания. Они реагируют мгновенно, надежны и способны поднимать очень тяжелые предметы
— руководитель исследовательской группы, Райан Хейворд.
Разработчики считают, что изобретенный ими фотомеханический материал обладает огромным потенциалом и может быть использован во многих областях. Например, он может заменить электроприводы в роботах и транспортных средствах или стать альтернативой громоздким батареям для питания дронов с помощью лазеров. Однако у ученых еще остается много работы, чтобы довести свою разработку до совершенства. Они хотят получить больший контроль над движением материала и повысить его эффективность. Исследование было опубликовано в журнале Nature Materials.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

NASA объявило: Найдены самые убедительные доказательства существования жизни на Марсе
Ученые тем временем выясняют, как могли выглядеть древние жители Красной планеты...

16-тонный саркофаг, заполненный сокровищами, может подтвердить одну из самых таинственных и кровавых легенд древнего Китая
Какой секрет хранила эта гробница, что оставалась единственной нетронутой два тысячелетия?...

Ученый утверждает: у него есть доказательства, что мы живем в матрице
По словам Мелвина Вопсона, подсказки он нашел в ДНК, расширении Вселенной и фундаментальных законах физики...

Новая операция по объединению людей и животных может подарить… вечную жизнь
Медики признаются: уже сейчас можно сделать новое тело человека. Но один орган пока не поддается науке...

Выяснилось, что полное восстановление озонового слоя закончится глобальной катастрофой
Как так вышло, что в борьбе за экологию человечество сделало себе еще хуже?...

Оказывается, решение проблемы выбоин на дорогах существует уже почти 100 лет
Почему технология, забытая полвека назад, возвращается и становится очень популярной?...

Разгадка феномена «копченых» мумий может переписать древнейшую историю человечества
Поразительно: этот погребальный обычай, возможно, используют уже 42 000 лет подряд!...

Не украли, а «присвоили»: историки выяснили, как и откуда семья Марко Поло раздобыла главный символ Венеции
Данные, полученные из «ДНК» льва святого Марка, помогли распутать детектив длиной в 700 лет...

К 2035 году сектор Газа должен стать… самым продвинутым регионом на планете под управлением ИИ
По словам экспертов, в дерзком эксперименте за 100 млрд долларов есть только один большой вопрос: Куда выселить местное население?...

Каждый год, как расписанию, на Марсе образуется странное облако
Долгое время ученые не могли разгадать эту аномалию, но теперь ответ наконец-то найден!...