
Магия света: крошечные кристаллы, обладающие невероятной силой
Ученые представили миру необычный материал: крошечные органические кристаллы могут превращать свет в механическую силу. А еще удивительно, что этот фотомеханический материал способен поднимать предметы, вес которых в 10 000 раз превышает его собственный. И самое главное — вся эта мощь обходится без использования тепла или электричества.
Фотомеханические материалы созданы для того, чтобы свет превращался непосредственно в движение. Это — результат сложного взаимодействия физики, химии, оптики и других наук. Фотомеханические приводы, в основе которых лежит управление освещением, пользуются все большей популярностью.
Исследователи из Университета Колорадо в Боулдере совершили небывалый прорыв в разработке таких приводов. Новый материал представляет собой крошечные органические кристаллы, которые могут исполнять настоящие чудеса. Они способны гнуться и поднимать предметы гораздо тяжелее самого себя. Перспективы практического применения такого материала невероятны.
Сочетание фотохимии, химии полимеров, физики и механики в фотомеханическом материале позволяет генерировать механический отклик на молекулярном уровне. До недавнего времени это требовало организации особых условий, чтобы молекулы двигались в нужном направлении. Обычно для этого использовались жидкие кристаллические полимеры или упорядоченные молекулярные кристаллы.
Однако ранее разработанные фотомеханические материалы имели свои ограничения. Они использовали кристаллические твердые вещества, которые меняли свою форму в ответ на фотохимическую реакцию. Но эти материалы часто трескались под воздействием света и не могли служить полностью функциональными приводами. Именно эти проблемы решили ученые из Университета Колорадо.
Они использовали вместо крупных кристаллов массивы крошечных органических кристаллов. Кристаллы получили из диаритена и внедрили в полимерный материал с порами размером с микрон. Это решение стало настоящим прорывом.
Кристаллы вырастали внутри пор, что сделало их прочнее и повысило производство энергии при воздействии света. Поры защищали кристаллы от трещин при освещении. Композитный материал можно сгибать без ущерба для его фотомеханических свойств — он способен выдержать изгиб до 180° и оставаться работоспособным. Кристаллы также позволяют преобразовывать свет в механическую работу без использования тепла и электричества.
Изучая возможности фотомеханических кристаллов, исследователи провели эксперименты, связанные с поднятием тяжестей, чтобы проверить их работоспособность. И результаты оказались поразительными. Кристаллическая матрица весом всего 0,02 мг смогла поднять нейлоновый шарик весом 20 мг. Это великолепное достижение, поскольку вес шарика в 10 000 раз превышает вес кристаллической матрицы.
— руководитель исследовательской группы, Райан Хейворд.
Разработчики считают, что изобретенный ими фотомеханический материал обладает огромным потенциалом и может быть использован во многих областях. Например, он может заменить электроприводы в роботах и транспортных средствах или стать альтернативой громоздким батареям для питания дронов с помощью лазеров. Однако у ученых еще остается много работы, чтобы довести свою разработку до совершенства. Они хотят получить больший контроль над движением материала и повысить его эффективность. Исследование было опубликовано в журнале Nature Materials.
Фотомеханические материалы созданы для того, чтобы свет превращался непосредственно в движение. Это — результат сложного взаимодействия физики, химии, оптики и других наук. Фотомеханические приводы, в основе которых лежит управление освещением, пользуются все большей популярностью.
Исследователи из Университета Колорадо в Боулдере совершили небывалый прорыв в разработке таких приводов. Новый материал представляет собой крошечные органические кристаллы, которые могут исполнять настоящие чудеса. Они способны гнуться и поднимать предметы гораздо тяжелее самого себя. Перспективы практического применения такого материала невероятны.
Сочетание фотохимии, химии полимеров, физики и механики в фотомеханическом материале позволяет генерировать механический отклик на молекулярном уровне. До недавнего времени это требовало организации особых условий, чтобы молекулы двигались в нужном направлении. Обычно для этого использовались жидкие кристаллические полимеры или упорядоченные молекулярные кристаллы.
Однако ранее разработанные фотомеханические материалы имели свои ограничения. Они использовали кристаллические твердые вещества, которые меняли свою форму в ответ на фотохимическую реакцию. Но эти материалы часто трескались под воздействием света и не могли служить полностью функциональными приводами. Именно эти проблемы решили ученые из Университета Колорадо.
Они использовали вместо крупных кристаллов массивы крошечных органических кристаллов. Кристаллы получили из диаритена и внедрили в полимерный материал с порами размером с микрон. Это решение стало настоящим прорывом.
Кристаллы вырастали внутри пор, что сделало их прочнее и повысило производство энергии при воздействии света. Поры защищали кристаллы от трещин при освещении. Композитный материал можно сгибать без ущерба для его фотомеханических свойств — он способен выдержать изгиб до 180° и оставаться работоспособным. Кристаллы также позволяют преобразовывать свет в механическую работу без использования тепла и электричества.
Изучая возможности фотомеханических кристаллов, исследователи провели эксперименты, связанные с поднятием тяжестей, чтобы проверить их работоспособность. И результаты оказались поразительными. Кристаллическая матрица весом всего 0,02 мг смогла поднять нейлоновый шарик весом 20 мг. Это великолепное достижение, поскольку вес шарика в 10 000 раз превышает вес кристаллической матрицы.
Эти новые приводы явно превосходят все ожидания. Они реагируют мгновенно, надежны и способны поднимать очень тяжелые предметы
— руководитель исследовательской группы, Райан Хейворд.
Разработчики считают, что изобретенный ими фотомеханический материал обладает огромным потенциалом и может быть использован во многих областях. Например, он может заменить электроприводы в роботах и транспортных средствах или стать альтернативой громоздким батареям для питания дронов с помощью лазеров. Однако у ученых еще остается много работы, чтобы довести свою разработку до совершенства. Они хотят получить больший контроль над движением материала и повысить его эффективность. Исследование было опубликовано в журнале Nature Materials.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Тайна пиратского корабля за 138 миллионов долларов раскрыта у берегов Мадагаскара
Шторм, предательство, тонны золота: Как капитан Стервятник похитил сокровища португальской короны....

Вот уже 17 лет власти Египта запрещают археологам исследовать легендарный Лабиринт
Что скрывает Египет: библиотеку Атлантиды или доказательства переписывания истории?...

Третий гость из бездны: NASA официально подтвердило межзвездное происхождение объекта 3I/ATLAS
Скорость в 245 000 км/ч! Астрофизики говорят, гость «прострелит» Солнечную систему как пуля....

Эксперты бьют тревогу: Таяние ледников разбудит вулканы по всему миру
Цепная реакция извержений прокатится от Антарктиды до Камчатки. Выбросы пепла и CO2 сделают климат невыносимым....

Воскрешение монстра: Colossal возвращает к жизни 3,6-метровую птицу-убийцу моа!
Сможет ли 230-килограммовый гигант из Новой Зеландии выжить среди людей?...

Череп ребенка-«пришельца» из Аргентины оказался вполне земным
Эксперты рассказали в подробностях, как могла появиться «инопланетная» форма головы....

«Богатые тоже плачут»: США открыли «новую эру энергетики» — 800 часов в год без света!
Штаты хвастались ИИ, а электросети «горят» даже от чат-ботов… Россия тем временем запускает термояд....