ВСЛУХ

Итальянские ученые разработали гибкий перовскитный солнечный элемент с эффективностью 32,5%

Итальянские ученые разработали гибкий перовскитный солнечный элемент с эффективностью 32,5%
Ученые из Римского университета Тор Вергата поставили своей целью создать перовскитный солнечный элемент для внутренних применений, таких как автономные беспроводные датчики, маломощная бытовая электроника, умные дома, домотика и приложения Интернета вещей (IoT).


Все эти элементы требуют эффективных и легко интегрируемых устройств сбора энергии для их питания. Внутренние фотоэлектрические источники питания на ультратонких гибких подложках будут иметь потенциал для облегчения этих технологических инноваций, если они смогут обеспечить достаточную энергию при внутреннем освещении, а не на солнце

— исследователь Томас М. Браун.

Исследовательская группа построила клетку с подложкой из полиэтилентерефталата (ПЭТ).

По сравнению с другими пластиковыми подложками, такими как полиэтиленнафталат (PEN), ПЭТ обеспечивает большую стойкость к ультрафиолетовому излучению и в шесть раз более экономичен. Эти качества позиционируют его как прозрачную полимерную подложку для пластиковой электроники

— Томас М. Браун.

Исследователи построили ячейку, используя последовательность слоев, включая подложку из ПЭТ, слой оксида индия и олова (ITO), слой переноса электронов оксида олова (IV) (SnO2) (ETL), поглотитель перовскита, слой бромида тетрабутиламмония (TBAB), слой для переноса отверстий Spiro-OMeTAD (HTL) и верхний электрод из золота (Au). Включение TBAB поверх 3D-перовскитной матрицы помогло снизить плотность дефектов и повысить стабильность общей объемной структуры 3D-перовскита.

Это, в свою очередь, уменьшает рекомбинацию с помощью ловушки, которая имеет решающее значение для эффективного сбора носителей в условиях низкой освещенности в помещении, поскольку скорость фотогенерации носителей низкая. Общий результат — значительное повышение производительности устройства

— Томас М. Браун.

Протестированная в стандартных условиях освещения, ячейка достигла КПД преобразования энергии 32,5%. Он также сохранил более 80% своей первоначальной эффективности после 1,000 циклов гибки. Полученный фотоэлемент имеет в 1,4 раза более длительный срок службы носителя, на порядок меньший ток утечки и в 3 раза меньшую плотность дефектов, подавляя рекомбинацию.

Исследователи описали солнечную батарею в статье «Высокоэффективные гибкие перовскитные солнечные элементы на полиэтилентерефталатных пленках с помощью двойного галогенида и низкоразмерного интерфейса для внутренней фотогальваники», которая недавно была опубликована в RRL Solar. В состав исследовательской группы вошли ученые из Университета Гиланя в Иране, GreatCell Solar Italia, Центра гибридной и органической солнечной энергии (CHOSE), Института кристаллографии (IC-CNR), Института нанотехнологий (CNR NANOTEC) и Университета Саленто.

Автор:

Использованы фотографии: Римский университет Тор Вергата

Мы в Мы в Яндекс Дзен
Лучшие роботы с Всемирной агропромышленной выставки – 2023Обзор Samsung Galaxy S23 Ultra

Нас ждет новая пандемия?

Нас ждет новая пандемия?

Африка в очередной раз подтвердила, что она — инкубатор смертельно опасных вирусов....
  • 619