Ученые впервые использовали Юпитер в качестве детектора темной материи
Темная материя — одна из самых загадочных и недоступных для наблюдения форм вещества во Вселенной. По оценкам астрономов, она составляет около 85% от всей массы материи, но не участвует в электромагнитном взаимодействии и не излучает свет. Единственный способ обнаружить ее существование — по ее гравитационному влиянию на видимые объекты, такие как звезды, галактики и кластеры.
Однако гравитация не единственный потенциальный канал связи темной материи с обычной. Некоторые теории предполагают, что частицы темной материи могут аннигилировать друг с другом, то есть уничтожаться с выделением энергии в виде гамма-квантов или других элементарных частиц. Если такие процессы действительно происходят, то они могут быть зарегистрированы с помощью специальных детекторов на Земле или в космосе.
Поиск аннигиляции темной материи сопряжен с большими трудностями. Во-первых, неизвестны масса и свойства частиц темной материи, а также вероятность их столкновений. Во-вторых, гамма-излучение может иметь и другие источники, такие как активные ядра галактик, сверхновые звезды, пульсары и т. д., которые создают фоновый шум и мешают выделить сигнал от темной материи.
Поэтому ученые ищут способы повысить чувствительность и точность своих экспериментов, используя различные стратегии и методы. Одна из таких стратегий заключается в использовании массивных астрономических объектов, таких как Солнце или Юпитер, в качестве естественных детекторов темной материи.
Идея состоит в том, что эти объекты за счет своей большой массы и малой температуры могут притягивать и удерживать частицы темной материи, которые попадают в них из окружающего пространства. Таким образом, внутри них может образовываться скопление темной материи, где повышается вероятность аннигиляции. Результатом таких процессов должно быть излучение гамма-квантов, которое можно обнаружить с помощью спутниковых или наземных телескопов.
Эта идея была предложена еще в 1980-х годах, но до недавнего времени не была проверена на практике. Причиной этого была отсутствие достаточно мощных и чувствительных гамма-телескопов, способных зарегистрировать слабый сигнал от аннигиляции темной материи на фоне других источников излучения.
Ситуация изменилась в 2008 году, когда на орбиту был выведен космический гамма-телескоп Fermi, предназначенный для наблюдения за высокоэнергетическими процессами во Вселенной. Этот телескоп имеет высокую чувствительность и разрешение в диапазоне энергий от 10 МэВ до 300 ГэВ и может обследовать всю небесную сферу за 3 часа.
Используя данные, собранные телескопом Fermi за 12 лет работы, международная группа ученых впервые провела поиск гамма-излучения от аннигиляции темной материи внутри Юпитера. Для этого они анализировали спектр и интенсивность излучения, исходящего от планеты, и сравнивали его с фоновым уровнем и теоретическими моделями.
Ученые не обнаружили никаких аномалий или избытков гамма-излучения, которые могли бы свидетельствовать о наличии темной материи в Юпитере. Это позволило им поставить жесткие ограничения на массу и сечение рассеяния частиц темной материи, а также на их взаимодействие с обычной материей. Полученные результаты согласуются с другими экспериментами по поиску темной материи и исключают большой класс теоретических моделей.
Это исследование демонстрирует, что Юпитер может быть полезным инструментом для изучения темной материи и ее свойств. В будущем ученые планируют продолжить наблюдения за этой планетой с помощью более мощных гамма-телескопов нового поколения, таких как CTA (Cherenkov Telescope Array), которые могут расширить диапазон энергий и повысить точность измерений. Также интерес представляют другие массивные объекты, такие как Солнце, Земля или даже Луна, которые также могут служить детекторами темной материи.
Однако гравитация не единственный потенциальный канал связи темной материи с обычной. Некоторые теории предполагают, что частицы темной материи могут аннигилировать друг с другом, то есть уничтожаться с выделением энергии в виде гамма-квантов или других элементарных частиц. Если такие процессы действительно происходят, то они могут быть зарегистрированы с помощью специальных детекторов на Земле или в космосе.
Поиск аннигиляции темной материи сопряжен с большими трудностями. Во-первых, неизвестны масса и свойства частиц темной материи, а также вероятность их столкновений. Во-вторых, гамма-излучение может иметь и другие источники, такие как активные ядра галактик, сверхновые звезды, пульсары и т. д., которые создают фоновый шум и мешают выделить сигнал от темной материи.
Поэтому ученые ищут способы повысить чувствительность и точность своих экспериментов, используя различные стратегии и методы. Одна из таких стратегий заключается в использовании массивных астрономических объектов, таких как Солнце или Юпитер, в качестве естественных детекторов темной материи.
Идея состоит в том, что эти объекты за счет своей большой массы и малой температуры могут притягивать и удерживать частицы темной материи, которые попадают в них из окружающего пространства. Таким образом, внутри них может образовываться скопление темной материи, где повышается вероятность аннигиляции. Результатом таких процессов должно быть излучение гамма-квантов, которое можно обнаружить с помощью спутниковых или наземных телескопов.
Эта идея была предложена еще в 1980-х годах, но до недавнего времени не была проверена на практике. Причиной этого была отсутствие достаточно мощных и чувствительных гамма-телескопов, способных зарегистрировать слабый сигнал от аннигиляции темной материи на фоне других источников излучения.
Ситуация изменилась в 2008 году, когда на орбиту был выведен космический гамма-телескоп Fermi, предназначенный для наблюдения за высокоэнергетическими процессами во Вселенной. Этот телескоп имеет высокую чувствительность и разрешение в диапазоне энергий от 10 МэВ до 300 ГэВ и может обследовать всю небесную сферу за 3 часа.
Используя данные, собранные телескопом Fermi за 12 лет работы, международная группа ученых впервые провела поиск гамма-излучения от аннигиляции темной материи внутри Юпитера. Для этого они анализировали спектр и интенсивность излучения, исходящего от планеты, и сравнивали его с фоновым уровнем и теоретическими моделями.
Ученые не обнаружили никаких аномалий или избытков гамма-излучения, которые могли бы свидетельствовать о наличии темной материи в Юпитере. Это позволило им поставить жесткие ограничения на массу и сечение рассеяния частиц темной материи, а также на их взаимодействие с обычной материей. Полученные результаты согласуются с другими экспериментами по поиску темной материи и исключают большой класс теоретических моделей.
Это исследование демонстрирует, что Юпитер может быть полезным инструментом для изучения темной материи и ее свойств. В будущем ученые планируют продолжить наблюдения за этой планетой с помощью более мощных гамма-телескопов нового поколения, таких как CTA (Cherenkov Telescope Array), которые могут расширить диапазон энергий и повысить точность измерений. Также интерес представляют другие массивные объекты, такие как Солнце, Земля или даже Луна, которые также могут служить детекторами темной материи.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Операция «Байконур»: как СССР дерзко и красиво долгие годы водил за нос весь Запад
С какого космодрома на самом деле стартовал Юрий Гагарин?...
Темная тайна муслиновой «эпидемии»: почему иностранная ткань выкосила тысячи красивых молодых женщин в России начала XIX века?
«Барыни гибнут тысячами как осенние мухи»: на 20 лет французская мода «отключила» инстинкт самосохранения у русских аристократок...
Рассекреченные архивы ФСБ полностью подтвердили легенду о медали № 00001 «За оборону Сталинграда»
Историки рассказали: почему Сталин пришел в гнев, когда ему попытались вручить эту награду...
11 лет обмана и позора: Эксперты констатируют, что программа «Чистый Эверест» с треском провалилась
Кто и почему превращает высочайшую гору на планете в гигантскую свалку?...
Главная тайна Аркаима: что спасло самый древний город на территории России от полного уничтожения?
Почему эксперты считают, что в этом месте «текут» две параллельные реальности?...
Еще раз о Карамзине: почему нынешние ученые обвиняют его в многочисленных и сознательных искажениях российской истории?
Зачем «великий историк» XIX века так очернил Ивана Грозного?...
Новое исследование показало: «пришельцы» правят дном арктических морей вот уже полмиллиарда лет
Российские ученые сделали поразительное открытие, изучив 3000 находок за последние 80 лет...
Чужое сердце, чужая жизнь: эти истории заставляют сомневаться в науке
Новое исследование говорит: 90% людей, получивших чужие органы, признаются, что они странно изменились после операции...
Наука в корне ошибалась: на Титане нет огромного океана, вместо этого он пронизан «слякотными туннелями»
Почему ученые уверены, что новое открытие только увеличивает шансы на нахождение жизни на крупнейшем спутнике Сатурна?...
«Криминальный авторитет» мезозойской эпохи: российские ученые обнаружили динозавра, который был «заточен» исключительно… под воровство
Грабил по ночам, таскал яйца у гигантов и много миллионов лет оставался нераскрытым...