Разрушить, чтобы ускорить: Парадокс аккумулятора
Новое исследование показало, что скорость зарядки литий-ионного аккумулятора можно существенно увеличить с помощью многочисленных трещин катода.
Литий-ионные аккумуляторы — наиболее распространенный тип электрических аккумуляторов, который используется в современной бытовой электронике, электромобилях и накопителях энергии. Они состоят из анода из пористого углерода и катода из оксида лития с различными добавками металлов. Между ними находится сепаратор из полипропилена, пропитанный электролитом — жидкостью или гелем, содержащим свободные ионы. При зарядке и разрядке аккумулятора ионы лития перемещаются между анодом и катодом через электролит, а электроны — по внешней цепи, создавая электрический ток.
Долгое время считалось, что литий диффундирует в объем частицы катода с поверхности. От этого зависела скорость зарядки аккумулятора: чем меньше частицы, тем больше у них площадь поверхности относительно объема, тем быстрее они заряжаются. Однако новое исследование ученых из Мичиганского университета показало, что это не так.
Трещины в положительных электродах литий-ионных аккумуляторов оказывают влияние на время зарядки батареи, противореча мнению некоторых производителей электромобилей. Исследователи из Мичиганского университета обнаружили, что удаление трещин на положительном электроде не позволит частицам аккумулятора быстро заряжаться без дополнительной площади поверхности.
Исследователи также обнаружили, что таким образом ведет себя не только внешняя поверхность. Внутри катодных пластин также происходит растрескивание, что создает более активные площади для поглощения ионов лития. Это открытие поможет лучше понять, как трещины влияют на скорость зарядки аккумулятора.
Для своих исследований ученые использовали специально разработанный чип с микроэлектродами, который переносил отдельные частицы на массив электродов. При этом было выяснено, что скорость зарядки катодных частиц не зависит от их размера. Более крупные частицы с трещинами ведут себя как набор более мелких частиц.
Эти результаты важны для разработки батарей для электромобилей, поскольку свыше половины всех аккумуляторов для электромобилей содержат положительный электрод, состоящий из миллиардов микроскопических частиц. Скорость зарядки положительного электрода определяется отношением поверхности к объему частиц. Меньшие частицы должны заряжаться быстрее, чем большие, за счет увеличенной площади поверхности.
Однако, чтобы использовать это открытие на практике, требуется дальнейшее увеличение размера частиц батареи в 200 раз. Это представляет сложности при производстве батарей, поэтому важно найти альтернативные методы увеличения скорости зарядки, такие как создание монокристаллических катодов из материалов с более высокой скоростью переноса лития.
В целом, исследование показало, что трещины в литий-ионных аккумуляторах положительного электрода оказывают положительное влияние на время их зарядки. Это открытие имеет большое практическое значение для разработки более эффективных и долговечных батарей для различных применений, включая электромобили и другие устройства, которые зависят от литиевых аккумуляторов.
Литий-ионные аккумуляторы — наиболее распространенный тип электрических аккумуляторов, который используется в современной бытовой электронике, электромобилях и накопителях энергии. Они состоят из анода из пористого углерода и катода из оксида лития с различными добавками металлов. Между ними находится сепаратор из полипропилена, пропитанный электролитом — жидкостью или гелем, содержащим свободные ионы. При зарядке и разрядке аккумулятора ионы лития перемещаются между анодом и катодом через электролит, а электроны — по внешней цепи, создавая электрический ток.
Долгое время считалось, что литий диффундирует в объем частицы катода с поверхности. От этого зависела скорость зарядки аккумулятора: чем меньше частицы, тем больше у них площадь поверхности относительно объема, тем быстрее они заряжаются. Однако новое исследование ученых из Мичиганского университета показало, что это не так.
Трещины в положительных электродах литий-ионных аккумуляторов оказывают влияние на время зарядки батареи, противореча мнению некоторых производителей электромобилей. Исследователи из Мичиганского университета обнаружили, что удаление трещин на положительном электроде не позволит частицам аккумулятора быстро заряжаться без дополнительной площади поверхности.
Исследователи также обнаружили, что таким образом ведет себя не только внешняя поверхность. Внутри катодных пластин также происходит растрескивание, что создает более активные площади для поглощения ионов лития. Это открытие поможет лучше понять, как трещины влияют на скорость зарядки аккумулятора.
Для своих исследований ученые использовали специально разработанный чип с микроэлектродами, который переносил отдельные частицы на массив электродов. При этом было выяснено, что скорость зарядки катодных частиц не зависит от их размера. Более крупные частицы с трещинами ведут себя как набор более мелких частиц.
Эти результаты важны для разработки батарей для электромобилей, поскольку свыше половины всех аккумуляторов для электромобилей содержат положительный электрод, состоящий из миллиардов микроскопических частиц. Скорость зарядки положительного электрода определяется отношением поверхности к объему частиц. Меньшие частицы должны заряжаться быстрее, чем большие, за счет увеличенной площади поверхности.
Однако, чтобы использовать это открытие на практике, требуется дальнейшее увеличение размера частиц батареи в 200 раз. Это представляет сложности при производстве батарей, поэтому важно найти альтернативные методы увеличения скорости зарядки, такие как создание монокристаллических катодов из материалов с более высокой скоростью переноса лития.
В целом, исследование показало, что трещины в литий-ионных аккумуляторах положительного электрода оказывают положительное влияние на время их зарядки. Это открытие имеет большое практическое значение для разработки более эффективных и долговечных батарей для различных применений, включая электромобили и другие устройства, которые зависят от литиевых аккумуляторов.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Резкое сокращение численности летучих мышей вызвало смерти… тысяч американских детей
Зловещая взаимосвязь выявилась совсем недавно....
Антарктида достигла точки невозврата?
Выводы ведущих ученых разнятся....
Японский угорь: съеден, но не сломлен
Обнаружен поразительный способ убегать даже из желудка хищника....
Устройство причудливой формы признано самым креативным и полезным девайсом года
Большинство английских ученых пришли в восторг от этого прибора....
Утраченную технологию кораблестроения возрастом 3500 лет заново открыли в 1950-х
Догреческие жители Крита были удивительно искусными корабелами....
В Польше нашли древнюю могилу ребёнка-«вампира»
На страшное захоронение наткнулись в Хелме....
Интернет-кошмар для детей и подростков в Австралии
Правительство закрывает малолетним доступ к соцсетям....
Встретимся в «Кафе „Белая акула“»
Ученые открыли главный секрет самых больших хищных рыб....
Шнобелевскую премию присудили за ракеты с голубиным наведением и дышащих задом свиней
Сюр, достойный научной премии за сомнительные достижения....
Как зомби: частицы организма продолжили существование между жизнью и смертью
Странные клетки прозвали ксено- и антропботами....
Ученые обнаружили «смайлик» на Марсе
Эта «улыбка» может намекать на научную сенсацию....
Водоросли: ключ к бесконечному источнику энергии?
Ученые считают, что новая технология радикально изменит мир....
Деревяшка возрастом 1300 лет оказалась частью японской таблицы умножения
Но придумали такой «калькулятор» гораздо раньше — в Китае....
Кто достоин пособия: Теперь решает искусственный интелект
Суд не сможет отменить вероятные ошибки....
Шкурный вопрос: Скандинавы мастерили лодки из кожи ещё в эпоху неолита
А иначе картина морских походов не складывается....
Оказалось, что угловатая акула со свиной мордой хрюкает при поимке
А еще эта уникальная рыба просто обожает яйца....