Новая структура обучения роботов: перевод человеческих рассуждений в повседневные задачи
Представьте себе робота, который может стать вашим идеальным помощником в выполнении повседневных задач по дому. Однако, когда вы просите его выполнить определенную задачу, он может столкнуться с трудностями из-за отличий в окружающей среде. Это было сложной задачей для ученых, которые занялись разработкой новой структуры обучения роботов, позволяющей им учиться быстрее и эффективнее.
Главным элементом этой структуры является способность робота объяснять свои неудачи и получать обратную связь от пользователя. Энди Пэн, аспирант электротехники и информатики (EECS) в Массачусетском технологическом институте, выступил ведущим исследователем в этой области. Пэн и его команда ученых из Массачусетского технологического института, Нью-Йоркского университета и Калифорнийского университета в Беркли разработали инновационную структуру, которая позволяет сконцентрировать обучение робота на выполнении конкретных задач с минимальными усилиями со стороны пользователей.
Структура основана на использовании алгоритма, который генерирует контрфактивные объяснения, объясняющие причину неудачи робота. Например, робот может не узнать кружку на столе из-за необычного декора на кружке. Это объяснение презентуется пользователю, который может дать обратную связь и помочь роботу понять, что нужно изменить, чтобы успешно выполнять задачи.
Ключевым моментом в структуре является использование обратной связи от пользователя для корректировки данных и точной настройки робота. Это позволяет роботам учиться эффективно и быстро, используя полученную информацию от людей.
— Энди Пэн.
Исследователи предложили три шага для этого процесса. Во-первых, система показывает задачу, в которой робот не справился. Затем пользователь демонстрирует желаемое действие, а система генерирует контрфактические объяснения для сравнения. Пользователь предоставляет обратную связь, и система создает новые данные, которые помогут улучшить робота.
Энди Пэн отмечает, что новая структура позволяет учить роботов эффективнее без необходимости демонстрировать тысячи примеров. Это означает, что робот может понять, как выполнять задачу с помощью только одного образца и самостоятельно определять контекст и важные элементы.
— Энди Пэн.
Ключевой принцип работы структуры — увеличение объема данных. Например, если робот не распознает кружку определенного цвета, это может быть связано с недостатком данных в обучающих примерах. Добавление большего разнообразия в обучающие данные позволяет роботу лучше понять контекст и обобщать информацию.
Результаты исследования успешно проверены в нескольких симуляциях. Роботы, обученные с использованием этой структуры, демонстрировали лучшие результаты в выполнении задач за меньшее время.
Главным элементом этой структуры является способность робота объяснять свои неудачи и получать обратную связь от пользователя. Энди Пэн, аспирант электротехники и информатики (EECS) в Массачусетском технологическом институте, выступил ведущим исследователем в этой области. Пэн и его команда ученых из Массачусетского технологического института, Нью-Йоркского университета и Калифорнийского университета в Беркли разработали инновационную структуру, которая позволяет сконцентрировать обучение робота на выполнении конкретных задач с минимальными усилиями со стороны пользователей.
Структура основана на использовании алгоритма, который генерирует контрфактивные объяснения, объясняющие причину неудачи робота. Например, робот может не узнать кружку на столе из-за необычного декора на кружке. Это объяснение презентуется пользователю, который может дать обратную связь и помочь роботу понять, что нужно изменить, чтобы успешно выполнять задачи.
Ключевым моментом в структуре является использование обратной связи от пользователя для корректировки данных и точной настройки робота. Это позволяет роботам учиться эффективно и быстро, используя полученную информацию от людей.
Это было ясно сразу. Люди хороши в этом типе контрфактических рассуждений. И этот контрфактивный шаг — то, что позволяет человеческое мышление быть переведенным в рассуждения роботов так, чтобы это имело смысл
— Энди Пэн.
Исследователи предложили три шага для этого процесса. Во-первых, система показывает задачу, в которой робот не справился. Затем пользователь демонстрирует желаемое действие, а система генерирует контрфактические объяснения для сравнения. Пользователь предоставляет обратную связь, и система создает новые данные, которые помогут улучшить робота.
Энди Пэн отмечает, что новая структура позволяет учить роботов эффективнее без необходимости демонстрировать тысячи примеров. Это означает, что робот может понять, как выполнять задачу с помощью только одного образца и самостоятельно определять контекст и важные элементы.
Мы хотим, чтобы роботы делали то, что делают люди, и мы хотим, чтобы они делали это семантически значимым образом. Люди имеют тенденцию работать в этом абстрактном пространстве, где они не думают о каждом свойстве в изображении. В конце концов, речь идет о том, чтобы позволить роботу выучить хорошее, человекоподобное представление на абстрактном уровне
— Энди Пэн.
Ключевой принцип работы структуры — увеличение объема данных. Например, если робот не распознает кружку определенного цвета, это может быть связано с недостатком данных в обучающих примерах. Добавление большего разнообразия в обучающие данные позволяет роботу лучше понять контекст и обобщать информацию.
Результаты исследования успешно проверены в нескольких симуляциях. Роботы, обученные с использованием этой структуры, демонстрировали лучшие результаты в выполнении задач за меньшее время.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Маск на грани: третья космическая катастрофа за год
Но эксперты уверены, что миллиардеру все снова сойдет с рук....
Аллигаторова щука: 100 миллионов лет... без эволюции
Как гигантская пресноводная рыба пережила даже динозавров?...
Антарктида стремительно зеленеет: за 40 лет там стало в 10 раз больше зелени
Почему так происходит и как это повлияет на климат по всей планете....
7 из 10: отключен еще один прибор «Вояджера-2»
Чем еще пришлось пожертвовать инженерам NASA?...
Иисус Христос пользовался... волшебной палочкой
Об этом говорят фрески и другие древние изображения....
Спустя 500 лет останки Колумба наконец-то обнаружены!
Ученым понадобилось более 20 лет, чтобы доказать их подлинность....
Таинственные области в мантии Земли оказались не тем, чем их считали ученые
Новое исследование показало, что все может быть намного проще....
Фотоны могут путешествовать в прошлое
Звучит поразительно, но физики обнаружили «отрицательное время» в странном эксперименте....
Тысячи компьютеров c Linux заражены вредоносным ПО
Эпидемия началась ещё в 2021 году....
Долой болты: будущее прочных соединений — за метаповерхностями
Управляемый крепёж для аэрокосмической отрасли, робототехники и медицины....
Колумб был не первым: за сотни лет до него викинги вовсю торговали с эскимосами
Об этом рассказали бивни средневековых моржей....
Мавзолей римского гладиатора оказался «общежитием»
Ученые разбираются, откуда в саркофаге бойца взялись кости 12 человек....
Археологи восстановили приёмы боя на копьях в бронзовом веке
Экспериментальная археология проливает свет на технику обращения с оружием....
Средство для бесследного заживления ран нашли в глистах
Брезгливость vs польза....
В Америке действует секретная программа по поиску и сокрытию информации об НЛО
Конгресс США в гневе, ведь Пентагон водил чиновников за нос много лет....
Льда на Луне ещё больше, чем думали
Местной воды должно хватить будущим колонистам сразу на всё....