
Живая ДНК вместо флешки: новый носитель цифровой информации
Синтетическая биология открывает новые возможности для хранения и передачи данных. Ученые из Сингапура создали биологическую камеру BacCam, которая может записывать и сохранять изображения в живой ДНК бактерий. Это может стать альтернативой традиционным способам хранения информации на магнитных и оптических носителях.
BacCam — это сокращение от Bacterial Camera, то есть бактериальная камера. Она состоит из двух частей: бактерий Escherichia coli, которые содержат специальные генетические цепочки, реагирующие на свет, и микрочипа с множеством микроскопических ячеек, в которых размещаются бактерии. Каждая ячейка представляет собой один пиксель изображения, которое хочется записать.
Принцип работы BacCam основан на использовании оптогенетических схем — комбинаций генов и белков, которые включаются или выключаются под воздействием света разных цветов. Ученые встроили такие схемы в ДНК бактерий, чтобы они могли фиксировать наличие или отсутствие света в каждой ячейке микрочипа. Затем они проецировали на микрочип двумерные световые узоры, например, буквы или смайлики. Бактерии регистрировали эти узоры и записывали их в свою ДНК, меняя последовательность нуклеотидов — химических оснований, из которых состоит ДНК.

Исследователи использовали возможности ДНК, присутствующие в клетках Escherichia coli, колиформной бактерии, обычно встречающейся в пищеварительном тракте теплокровных организмов, включая людей. Эти нити ДНК оснащены «оптогенетическими» схемами, способными обнаруживать наличие или отсутствие света. Используя эту функциональность, ученые разработали BacCam, биологическую камеру, которая может напрямую захватывать и хранить изображения в ДНК.
Для того чтобы не только записать, но и прочитать информацию из живой ДНК, ученые использовали метод высокопроизводительного секвенирования — определения последовательности нуклеотидов в ДНК. С помощью этого метода они смогли восстановить изображения, которые были записаны в бактериях. Кроме того, они показали, что могут записывать два разных изображения одновременно, используя красный и синий свет.
Живая ДНК имеет ряд преимуществ перед другими способами хранения данных. Во-первых, она очень компактна: один грамм ДНК может содержать до 215 петабайт информации. Во-вторых, она очень долговечна: ДНК может сохраняться тысячи лет при правильных условиях. В-третьих, она очень доступна: ДНК можно получить из любого живого организма или синтезировать в лаборатории.
Однако живая ДНК также имеет свои недостатки. Например, она подвержена мутациям — случайным изменениям в последовательности нуклеотидов, которые могут искажать или уничтожать информацию. Кроме того, она требует специального оборудования и навыков для записи и чтения данных, что делает ее менее удобной для повседневного использования.
Живая ДНК — это новый и перспективный носитель информации, который может решать проблемы переполнения и устаревания традиционных носителей. Однако для того, чтобы сделать ее широко доступной и практичной, нужно решить ряд технических и этических вопросов. Например, как обеспечить безопасность и конфиденциальность данных, хранящихся в живой ДНК? Как предотвратить злоупотребление или засорение окружающей среды живой ДНК? Как совместить биологические и электронные системы для эффективной работы с живой ДНК?
Ученые из Сингапура сделали важный шаг в развитии живой ДНК как носителя информации, создав биологическую камеру BacCam. Они показали, что можно записывать и сохранять изображения в живой ДНК бактерий, используя световые сигналы. Это может открыть новые возможности для хранения и передачи данных в биологической форме.
Как работает BacCam?
BacCam — это сокращение от Bacterial Camera, то есть бактериальная камера. Она состоит из двух частей: бактерий Escherichia coli, которые содержат специальные генетические цепочки, реагирующие на свет, и микрочипа с множеством микроскопических ячеек, в которых размещаются бактерии. Каждая ячейка представляет собой один пиксель изображения, которое хочется записать.
Принцип работы BacCam основан на использовании оптогенетических схем — комбинаций генов и белков, которые включаются или выключаются под воздействием света разных цветов. Ученые встроили такие схемы в ДНК бактерий, чтобы они могли фиксировать наличие или отсутствие света в каждой ячейке микрочипа. Затем они проецировали на микрочип двумерные световые узоры, например, буквы или смайлики. Бактерии регистрировали эти узоры и записывали их в свою ДНК, меняя последовательность нуклеотидов — химических оснований, из которых состоит ДНК.

Исследователи использовали возможности ДНК, присутствующие в клетках Escherichia coli, колиформной бактерии, обычно встречающейся в пищеварительном тракте теплокровных организмов, включая людей. Эти нити ДНК оснащены «оптогенетическими» схемами, способными обнаруживать наличие или отсутствие света. Используя эту функциональность, ученые разработали BacCam, биологическую камеру, которая может напрямую захватывать и хранить изображения в ДНК.
Для того чтобы не только записать, но и прочитать информацию из живой ДНК, ученые использовали метод высокопроизводительного секвенирования — определения последовательности нуклеотидов в ДНК. С помощью этого метода они смогли восстановить изображения, которые были записаны в бактериях. Кроме того, они показали, что могут записывать два разных изображения одновременно, используя красный и синий свет.
Чем живая ДНК лучше других носителей?
Живая ДНК имеет ряд преимуществ перед другими способами хранения данных. Во-первых, она очень компактна: один грамм ДНК может содержать до 215 петабайт информации. Во-вторых, она очень долговечна: ДНК может сохраняться тысячи лет при правильных условиях. В-третьих, она очень доступна: ДНК можно получить из любого живого организма или синтезировать в лаборатории.
Однако живая ДНК также имеет свои недостатки. Например, она подвержена мутациям — случайным изменениям в последовательности нуклеотидов, которые могут искажать или уничтожать информацию. Кроме того, она требует специального оборудования и навыков для записи и чтения данных, что делает ее менее удобной для повседневного использования.
Какие перспективы у живой ДНК?
Живая ДНК — это новый и перспективный носитель информации, который может решать проблемы переполнения и устаревания традиционных носителей. Однако для того, чтобы сделать ее широко доступной и практичной, нужно решить ряд технических и этических вопросов. Например, как обеспечить безопасность и конфиденциальность данных, хранящихся в живой ДНК? Как предотвратить злоупотребление или засорение окружающей среды живой ДНК? Как совместить биологические и электронные системы для эффективной работы с живой ДНК?
Ученые из Сингапура сделали важный шаг в развитии живой ДНК как носителя информации, создав биологическую камеру BacCam. Они показали, что можно записывать и сохранять изображения в живой ДНК бактерий, используя световые сигналы. Это может открыть новые возможности для хранения и передачи данных в биологической форме.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Планшет, пролежавший в Темзе пять лет, помог раскрыть серию запутанных преступлений
Эксперты говорят: даже вода не смогла стереть цифровые следы....

Учёные говорят, что обнаружили огромный тайный город под египетскими пирамидами
Проверять пока не разрешили....

«Инопланетяне» на Земле? Древние 8-метровые «грибы» оказались совершенно неизвестной формой жизни
Вот уже 180 лет подряд живые «башни» ставят в тупик всю науку....

«Шерстистый дьявол» обнаружен в пустыне, на границе Мексики и США
Ученые говорят: такой уникальной находки не было последние полвека....

Похоже, что проблема космического мусора в скором времени будет решена раз и навсегда
Новая технология не только очистит космос, но и поможет спутникам работать втрое дольше....

Американские спецслужбы скрывают правду о самой древней из библейских реликвий?
Экстрасенс ЦРУ предупредил: Ковчег Завета убьет каждого, кто к нему прикоснется....

Почему мы не помним себя младенцами? Новое исследование дало ответы
Возможно, помним, но «ларчик» заперт....

Археологи ликуют: в Испании нашли рисунки, которые старше человечества!
200 000-летняя находка заставит пересмотреть учебники....

Астрофизики рассказали, почему Вселенная замедляется вопреки предсказаниям Эйнштейна
Если открытие DESI и ослабление темной энергии подтвердится, учебники придется переписать....

Ученые поражены: мыши, как спасатели, оживляют своих сородичей, попавших в беду
Открытие, от которого дрогнет даже самое черствое сердце....

Кислород устарел! Ученые нашли новый ключ к внеземной жизни
Гицеанические миры могут стать новой надеждой астрофизиков....

На 100 000 лет раньше людей: ученые рассказали, кто устроил первые похороны на планете
Загадочные карлики Homo naledi, чей мозг был размером с апельсин, оказались не глупее нас с вами....

Секретная мутация гена: оказалось, ее имеют все обитатели Марианской впадины
Поразительное открытие китайских ученых может изменить всю теорию эволюции....

10 лет за 48 часов: ИИ полностью переиграл ученых в поисках секрета супербактерий
Однако эксперты предупреждают: нейросети не только ускоряют науку, они запросто могут столкнуть нас в пропасть....

Ученый рассказал, как использовались загадочные артефакты из гробницы Тутанхамона
Это было как в фильме «Мумия»: «Фараон должен воскреснуть!»...

Гигантский айсберг скрывал древнюю живую экосистему
Губки и кораллы благоденствуют на обнажившемся морском дне в месте, ранее недоступном взгляду....