Живая ДНК вместо флешки: новый носитель цифровой информации
Синтетическая биология открывает новые возможности для хранения и передачи данных. Ученые из Сингапура создали биологическую камеру BacCam, которая может записывать и сохранять изображения в живой ДНК бактерий. Это может стать альтернативой традиционным способам хранения информации на магнитных и оптических носителях.
BacCam — это сокращение от Bacterial Camera, то есть бактериальная камера. Она состоит из двух частей: бактерий Escherichia coli, которые содержат специальные генетические цепочки, реагирующие на свет, и микрочипа с множеством микроскопических ячеек, в которых размещаются бактерии. Каждая ячейка представляет собой один пиксель изображения, которое хочется записать.
Принцип работы BacCam основан на использовании оптогенетических схем — комбинаций генов и белков, которые включаются или выключаются под воздействием света разных цветов. Ученые встроили такие схемы в ДНК бактерий, чтобы они могли фиксировать наличие или отсутствие света в каждой ячейке микрочипа. Затем они проецировали на микрочип двумерные световые узоры, например, буквы или смайлики. Бактерии регистрировали эти узоры и записывали их в свою ДНК, меняя последовательность нуклеотидов — химических оснований, из которых состоит ДНК.
Исследователи использовали возможности ДНК, присутствующие в клетках Escherichia coli, колиформной бактерии, обычно встречающейся в пищеварительном тракте теплокровных организмов, включая людей. Эти нити ДНК оснащены «оптогенетическими» схемами, способными обнаруживать наличие или отсутствие света. Используя эту функциональность, ученые разработали BacCam, биологическую камеру, которая может напрямую захватывать и хранить изображения в ДНК.
Для того чтобы не только записать, но и прочитать информацию из живой ДНК, ученые использовали метод высокопроизводительного секвенирования — определения последовательности нуклеотидов в ДНК. С помощью этого метода они смогли восстановить изображения, которые были записаны в бактериях. Кроме того, они показали, что могут записывать два разных изображения одновременно, используя красный и синий свет.
Живая ДНК имеет ряд преимуществ перед другими способами хранения данных. Во-первых, она очень компактна: один грамм ДНК может содержать до 215 петабайт информации. Во-вторых, она очень долговечна: ДНК может сохраняться тысячи лет при правильных условиях. В-третьих, она очень доступна: ДНК можно получить из любого живого организма или синтезировать в лаборатории.
Однако живая ДНК также имеет свои недостатки. Например, она подвержена мутациям — случайным изменениям в последовательности нуклеотидов, которые могут искажать или уничтожать информацию. Кроме того, она требует специального оборудования и навыков для записи и чтения данных, что делает ее менее удобной для повседневного использования.
Живая ДНК — это новый и перспективный носитель информации, который может решать проблемы переполнения и устаревания традиционных носителей. Однако для того, чтобы сделать ее широко доступной и практичной, нужно решить ряд технических и этических вопросов. Например, как обеспечить безопасность и конфиденциальность данных, хранящихся в живой ДНК? Как предотвратить злоупотребление или засорение окружающей среды живой ДНК? Как совместить биологические и электронные системы для эффективной работы с живой ДНК?
Ученые из Сингапура сделали важный шаг в развитии живой ДНК как носителя информации, создав биологическую камеру BacCam. Они показали, что можно записывать и сохранять изображения в живой ДНК бактерий, используя световые сигналы. Это может открыть новые возможности для хранения и передачи данных в биологической форме.
Как работает BacCam?
BacCam — это сокращение от Bacterial Camera, то есть бактериальная камера. Она состоит из двух частей: бактерий Escherichia coli, которые содержат специальные генетические цепочки, реагирующие на свет, и микрочипа с множеством микроскопических ячеек, в которых размещаются бактерии. Каждая ячейка представляет собой один пиксель изображения, которое хочется записать.
Принцип работы BacCam основан на использовании оптогенетических схем — комбинаций генов и белков, которые включаются или выключаются под воздействием света разных цветов. Ученые встроили такие схемы в ДНК бактерий, чтобы они могли фиксировать наличие или отсутствие света в каждой ячейке микрочипа. Затем они проецировали на микрочип двумерные световые узоры, например, буквы или смайлики. Бактерии регистрировали эти узоры и записывали их в свою ДНК, меняя последовательность нуклеотидов — химических оснований, из которых состоит ДНК.
Исследователи использовали возможности ДНК, присутствующие в клетках Escherichia coli, колиформной бактерии, обычно встречающейся в пищеварительном тракте теплокровных организмов, включая людей. Эти нити ДНК оснащены «оптогенетическими» схемами, способными обнаруживать наличие или отсутствие света. Используя эту функциональность, ученые разработали BacCam, биологическую камеру, которая может напрямую захватывать и хранить изображения в ДНК.
Для того чтобы не только записать, но и прочитать информацию из живой ДНК, ученые использовали метод высокопроизводительного секвенирования — определения последовательности нуклеотидов в ДНК. С помощью этого метода они смогли восстановить изображения, которые были записаны в бактериях. Кроме того, они показали, что могут записывать два разных изображения одновременно, используя красный и синий свет.
Чем живая ДНК лучше других носителей?
Живая ДНК имеет ряд преимуществ перед другими способами хранения данных. Во-первых, она очень компактна: один грамм ДНК может содержать до 215 петабайт информации. Во-вторых, она очень долговечна: ДНК может сохраняться тысячи лет при правильных условиях. В-третьих, она очень доступна: ДНК можно получить из любого живого организма или синтезировать в лаборатории.
Однако живая ДНК также имеет свои недостатки. Например, она подвержена мутациям — случайным изменениям в последовательности нуклеотидов, которые могут искажать или уничтожать информацию. Кроме того, она требует специального оборудования и навыков для записи и чтения данных, что делает ее менее удобной для повседневного использования.
Какие перспективы у живой ДНК?
Живая ДНК — это новый и перспективный носитель информации, который может решать проблемы переполнения и устаревания традиционных носителей. Однако для того, чтобы сделать ее широко доступной и практичной, нужно решить ряд технических и этических вопросов. Например, как обеспечить безопасность и конфиденциальность данных, хранящихся в живой ДНК? Как предотвратить злоупотребление или засорение окружающей среды живой ДНК? Как совместить биологические и электронные системы для эффективной работы с живой ДНК?
Ученые из Сингапура сделали важный шаг в развитии живой ДНК как носителя информации, создав биологическую камеру BacCam. Они показали, что можно записывать и сохранять изображения в живой ДНК бактерий, используя световые сигналы. Это может открыть новые возможности для хранения и передачи данных в биологической форме.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Как на ладони: Обнаружен морской гигант, который виден из космоса
Мегакоралл у Соломоновых островов оказался самым крупным животным Земли....
Спасти планету сможет… африканский червь
В Кении найдено насекомое с удивительными способностями....
«Орешник», «Бук» и «Тополь»: искусный нейминг от российских военных конструкторов
Наука как сбить Запад с толку....
Главная тайна Седьмой планеты разгадана через 38 лет
Уран оказался не таким уж странным, как думали ученые....
80 000 лет жизни: какие тайны скрывает самое древнее и большое существо на планете?
Залог невероятного долголетия и удивительного выживания обнаружили учёные....
Раскрыт секрет идеального женского тела?
Оказывается, дело вовсе не в соотношении талии и бедер....
Саблезубый котёнок томился во льдах Якутии 35 тысяч лет
Благодаря находке стало известно, что сородичи пушистика обитали в столь холодных местах....
Ученая вылечила свой рак вирусами собственного производства
Если человек хочет жить — медицина бессильна....
Эти «красные монстры» вообще не должны существовать
Что узнали астрономы о трех невозможно огромных галактиках....
Почти бессмертные существа помогут человечеству покорить глубокий космос
Ученым, наконец, удалось «взломать» код поразительной живучести тихоходок....
Разгадано учеными: почему города разрушают сердце и разум
Причины, которые нашли исследователи, вас удивят....
Ещё один одинокий: в Балтийском море обнаружен дельфин, который может говорить только сам с собой
Совсем как старый вдовец, которого давно не навещали близкие....
Турбулентность отменяется! А пилоты-люди вообще будут не нужны
Искусственный интеллект может в корне изменить авиацию....
Надеялись на Беса: древние египтянки при беременности хлебали галлюциногенные смеси
Думали, что божок с двусмысленным для нас именем убережёт....
Большой мозг — не значит самый умный
Последнее исследование собак показало парадоксальные результаты....
АД-контроль: новейшая разработка облегчит жизнь гипертоникам
Ультразвуковой пластырь будет следить за давлением нон-стоп....