Платина из соды: в России нашли новый способ получения катализаторов
Катализаторы применяют в разных областях: от очистки автомобильных выхлопов до производства азотной кислоты. Одним из самых эффективных и дорогих катализаторов является платина — благородный металл, который обладает уникальной способностью взаимодействовать с разными веществами.
Но как получить платиновый катализатор? Для этого нужно использовать специальное соединение платины, которое называется прекурсором или предшественником катализатора. Из прекурсора платины можно получить мельчайшие частицы платины, которые распределяются на поверхности носителя — другого материала, который улучшает свойства катализатора. Такая форма позволяет увеличить активную поверхность платины и сократить ее расход.
Большинство существующих прекурсоров платины — растворы сильных кислот, которые имеют ряд недостатков: они коррозийны, токсичны, разрушают носитель и требуют сложной очистки от примесей. Поэтому химикам нужны более безопасные и удобные прекурсоры платины, которые бы обеспечивали высокую активность и стабильность катализаторов.
Такие прекурсоры нашли сибирские ученые из Института неорганической химии имени А. В. Николаева (Новосибирск) в сотрудничестве с коллегами из Института катализа имени Г. К. Борескова. Они обнаружили, что в растворах гидроксида платины, которые долго стояли на воздухе, образуются карбонатные комплексы платины. Это соединения, в которых атомы платины связаны с атомами углерода и кислорода из углекислого газа, который проникает в раствор из атмосферы.
Карбонатные комплексы платины — новый класс соединений, которые ранее не были изучены. Они оказались достаточно устойчивыми, чтобы храниться в растворе, но при нагревании или длительном хранении они превращаются в наночастицы оксида платины. Эти наночастицы можно использовать для получения катализаторов, если добавить в раствор с карбонатными комплексами платины какой-либо твердый носитель, например оксид церия или графитоподобный нитрид углерода. Наночастицы оксида платины оседают на поверхности носителя и образуют катализатор.
Исследователи проверили активность полученных катализаторов в реакции разложения гидразина на водород и азот. Гидразин — вещество, которое используется как ракетное топливо, но также может служить источником и хранилищем водорода — экологически чистого топлива. В присутствии катализаторов на основе платины гидразин легко распадается на газы, которые можно использовать для различных целей.
Все испытанные катализаторы показали высокую эффективность и избирательность в этой реакции, то есть почти весь гидразин превращался в водород и азот, а не в другие продукты. Одним из наиболее перспективных катализаторов на основе платины оказался сплав платины с никелем, который позволяет получать в 23 раза больше водорода из гидразина по сравнению с аналогичными катализаторами без никеля. Этот катализатор показал высокую стабильность, что делает его перспективным для промышленного использования. Кроме того, этот катализатор был стабилен и сохранял свою активность после нескольких циклов реакции.
Таким образом, ученые показали, что карбонатные комплексы платины — перспективные прекурсоры для получения катализаторов на основе платины. Они имеют ряд преимуществ перед традиционными прекурсорами: они безопасны, доступны, легко контролируются и не требуют дополнительной очистки. Благодаря этим преимуществам, карбонатные комплексы платины могут быть использованы для получения катализаторов с различными свойствами, добавляя разные носители или металлические сплавы. Такие катализаторы могут применяться в химических процессах, связанных с использованием водорода и других газов, и играть важную роль в развитии экологически чистых технологий.
Это исследование стало частью более широкого проекта по изучению химии и физики платиновых соединений, который проводится в Институте неорганической химии имени А. В. Николаева под руководством доктора химических наук Павла Поповецкого. Целью проекта является создание новых материалов на основе платины для различных приложений, в том числе для энергетики, медицины и наноэлектроники.
Но как получить платиновый катализатор? Для этого нужно использовать специальное соединение платины, которое называется прекурсором или предшественником катализатора. Из прекурсора платины можно получить мельчайшие частицы платины, которые распределяются на поверхности носителя — другого материала, который улучшает свойства катализатора. Такая форма позволяет увеличить активную поверхность платины и сократить ее расход.
Большинство существующих прекурсоров платины — растворы сильных кислот, которые имеют ряд недостатков: они коррозийны, токсичны, разрушают носитель и требуют сложной очистки от примесей. Поэтому химикам нужны более безопасные и удобные прекурсоры платины, которые бы обеспечивали высокую активность и стабильность катализаторов.
Такие прекурсоры нашли сибирские ученые из Института неорганической химии имени А. В. Николаева (Новосибирск) в сотрудничестве с коллегами из Института катализа имени Г. К. Борескова. Они обнаружили, что в растворах гидроксида платины, которые долго стояли на воздухе, образуются карбонатные комплексы платины. Это соединения, в которых атомы платины связаны с атомами углерода и кислорода из углекислого газа, который проникает в раствор из атмосферы.
Карбонатные комплексы платины — новый класс соединений, которые ранее не были изучены. Они оказались достаточно устойчивыми, чтобы храниться в растворе, но при нагревании или длительном хранении они превращаются в наночастицы оксида платины. Эти наночастицы можно использовать для получения катализаторов, если добавить в раствор с карбонатными комплексами платины какой-либо твердый носитель, например оксид церия или графитоподобный нитрид углерода. Наночастицы оксида платины оседают на поверхности носителя и образуют катализатор.
Исследователи проверили активность полученных катализаторов в реакции разложения гидразина на водород и азот. Гидразин — вещество, которое используется как ракетное топливо, но также может служить источником и хранилищем водорода — экологически чистого топлива. В присутствии катализаторов на основе платины гидразин легко распадается на газы, которые можно использовать для различных целей.
Все испытанные катализаторы показали высокую эффективность и избирательность в этой реакции, то есть почти весь гидразин превращался в водород и азот, а не в другие продукты. Одним из наиболее перспективных катализаторов на основе платины оказался сплав платины с никелем, который позволяет получать в 23 раза больше водорода из гидразина по сравнению с аналогичными катализаторами без никеля. Этот катализатор показал высокую стабильность, что делает его перспективным для промышленного использования. Кроме того, этот катализатор был стабилен и сохранял свою активность после нескольких циклов реакции.
Таким образом, ученые показали, что карбонатные комплексы платины — перспективные прекурсоры для получения катализаторов на основе платины. Они имеют ряд преимуществ перед традиционными прекурсорами: они безопасны, доступны, легко контролируются и не требуют дополнительной очистки. Благодаря этим преимуществам, карбонатные комплексы платины могут быть использованы для получения катализаторов с различными свойствами, добавляя разные носители или металлические сплавы. Такие катализаторы могут применяться в химических процессах, связанных с использованием водорода и других газов, и играть важную роль в развитии экологически чистых технологий.
Это исследование стало частью более широкого проекта по изучению химии и физики платиновых соединений, который проводится в Институте неорганической химии имени А. В. Николаева под руководством доктора химических наук Павла Поповецкого. Целью проекта является создание новых материалов на основе платины для различных приложений, в том числе для энергетики, медицины и наноэлектроники.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Как на ладони: Обнаружен морской гигант, который виден из космоса
Мегакоралл у Соломоновых островов оказался самым крупным животным Земли....
Спасти планету сможет… африканский червь
В Кении найдено насекомое с удивительными способностями....
Забудьте всё, что вы знали о Луне
Новая теория предлагает в корне иное происхождение ночного светила....
Главная тайна Седьмой планеты разгадана через 38 лет
Уран оказался не таким уж странным, как думали ученые....
80 000 лет жизни: какие тайны скрывает самое древнее и большое существо на планете?
Залог невероятного долголетия и удивительного выживания обнаружили учёные....
«Орешник», «Бук» и «Тополь»: искусный нейминг от российских военных конструкторов
Наука как сбить Запад с толку....
Раскрыт секрет идеального женского тела?
Оказывается, дело вовсе не в соотношении талии и бедер....
Янтарь из недр Антарктиды раскрыл тайны тропических лесов
Застывшая смола возрастом 90 млн лет как часть исчезнувшей экосистемы....
Саблезубый котёнок томился во льдах Якутии 35 тысяч лет
Благодаря находке стало известно, что сородичи пушистика обитали в столь холодных местах....
Ученая вылечила свой рак вирусами собственного производства
Если человек хочет жить — медицина бессильна....
Носи умные очки или увольняйся!
Amazon планирует заставить всех курьеров носить этот электронный прибор....
Разгадано учеными: почему города разрушают сердце и разум
Причины, которые нашли исследователи, вас удивят....
Почти бессмертные существа помогут человечеству покорить глубокий космос
Ученым, наконец, удалось «взломать» код поразительной живучести тихоходок....
Турбулентность отменяется! А пилоты-люди вообще будут не нужны
Искусственный интеллект может в корне изменить авиацию....
Надеялись на Беса: древние египтянки при беременности хлебали галлюциногенные смеси
Думали, что божок с двусмысленным для нас именем убережёт....
Чудо в перьях: Робот-голубь «упорхнёт» от радиолокации
Изобретение грозит новой гонкой вооружений....