
Платина из соды: в России нашли новый способ получения катализаторов
Катализаторы применяют в разных областях: от очистки автомобильных выхлопов до производства азотной кислоты. Одним из самых эффективных и дорогих катализаторов является платина — благородный металл, который обладает уникальной способностью взаимодействовать с разными веществами.
Но как получить платиновый катализатор? Для этого нужно использовать специальное соединение платины, которое называется прекурсором или предшественником катализатора. Из прекурсора платины можно получить мельчайшие частицы платины, которые распределяются на поверхности носителя — другого материала, который улучшает свойства катализатора. Такая форма позволяет увеличить активную поверхность платины и сократить ее расход.
Большинство существующих прекурсоров платины — растворы сильных кислот, которые имеют ряд недостатков: они коррозийны, токсичны, разрушают носитель и требуют сложной очистки от примесей. Поэтому химикам нужны более безопасные и удобные прекурсоры платины, которые бы обеспечивали высокую активность и стабильность катализаторов.
Такие прекурсоры нашли сибирские ученые из Института неорганической химии имени А. В. Николаева (Новосибирск) в сотрудничестве с коллегами из Института катализа имени Г. К. Борескова. Они обнаружили, что в растворах гидроксида платины, которые долго стояли на воздухе, образуются карбонатные комплексы платины. Это соединения, в которых атомы платины связаны с атомами углерода и кислорода из углекислого газа, который проникает в раствор из атмосферы.
Карбонатные комплексы платины — новый класс соединений, которые ранее не были изучены. Они оказались достаточно устойчивыми, чтобы храниться в растворе, но при нагревании или длительном хранении они превращаются в наночастицы оксида платины. Эти наночастицы можно использовать для получения катализаторов, если добавить в раствор с карбонатными комплексами платины какой-либо твердый носитель, например оксид церия или графитоподобный нитрид углерода. Наночастицы оксида платины оседают на поверхности носителя и образуют катализатор.
Исследователи проверили активность полученных катализаторов в реакции разложения гидразина на водород и азот. Гидразин — вещество, которое используется как ракетное топливо, но также может служить источником и хранилищем водорода — экологически чистого топлива. В присутствии катализаторов на основе платины гидразин легко распадается на газы, которые можно использовать для различных целей.
Все испытанные катализаторы показали высокую эффективность и избирательность в этой реакции, то есть почти весь гидразин превращался в водород и азот, а не в другие продукты. Одним из наиболее перспективных катализаторов на основе платины оказался сплав платины с никелем, который позволяет получать в 23 раза больше водорода из гидразина по сравнению с аналогичными катализаторами без никеля. Этот катализатор показал высокую стабильность, что делает его перспективным для промышленного использования. Кроме того, этот катализатор был стабилен и сохранял свою активность после нескольких циклов реакции.
Таким образом, ученые показали, что карбонатные комплексы платины — перспективные прекурсоры для получения катализаторов на основе платины. Они имеют ряд преимуществ перед традиционными прекурсорами: они безопасны, доступны, легко контролируются и не требуют дополнительной очистки. Благодаря этим преимуществам, карбонатные комплексы платины могут быть использованы для получения катализаторов с различными свойствами, добавляя разные носители или металлические сплавы. Такие катализаторы могут применяться в химических процессах, связанных с использованием водорода и других газов, и играть важную роль в развитии экологически чистых технологий.
Это исследование стало частью более широкого проекта по изучению химии и физики платиновых соединений, который проводится в Институте неорганической химии имени А. В. Николаева под руководством доктора химических наук Павла Поповецкого. Целью проекта является создание новых материалов на основе платины для различных приложений, в том числе для энергетики, медицины и наноэлектроники.
Но как получить платиновый катализатор? Для этого нужно использовать специальное соединение платины, которое называется прекурсором или предшественником катализатора. Из прекурсора платины можно получить мельчайшие частицы платины, которые распределяются на поверхности носителя — другого материала, который улучшает свойства катализатора. Такая форма позволяет увеличить активную поверхность платины и сократить ее расход.
Большинство существующих прекурсоров платины — растворы сильных кислот, которые имеют ряд недостатков: они коррозийны, токсичны, разрушают носитель и требуют сложной очистки от примесей. Поэтому химикам нужны более безопасные и удобные прекурсоры платины, которые бы обеспечивали высокую активность и стабильность катализаторов.
Такие прекурсоры нашли сибирские ученые из Института неорганической химии имени А. В. Николаева (Новосибирск) в сотрудничестве с коллегами из Института катализа имени Г. К. Борескова. Они обнаружили, что в растворах гидроксида платины, которые долго стояли на воздухе, образуются карбонатные комплексы платины. Это соединения, в которых атомы платины связаны с атомами углерода и кислорода из углекислого газа, который проникает в раствор из атмосферы.
Карбонатные комплексы платины — новый класс соединений, которые ранее не были изучены. Они оказались достаточно устойчивыми, чтобы храниться в растворе, но при нагревании или длительном хранении они превращаются в наночастицы оксида платины. Эти наночастицы можно использовать для получения катализаторов, если добавить в раствор с карбонатными комплексами платины какой-либо твердый носитель, например оксид церия или графитоподобный нитрид углерода. Наночастицы оксида платины оседают на поверхности носителя и образуют катализатор.
Исследователи проверили активность полученных катализаторов в реакции разложения гидразина на водород и азот. Гидразин — вещество, которое используется как ракетное топливо, но также может служить источником и хранилищем водорода — экологически чистого топлива. В присутствии катализаторов на основе платины гидразин легко распадается на газы, которые можно использовать для различных целей.
Все испытанные катализаторы показали высокую эффективность и избирательность в этой реакции, то есть почти весь гидразин превращался в водород и азот, а не в другие продукты. Одним из наиболее перспективных катализаторов на основе платины оказался сплав платины с никелем, который позволяет получать в 23 раза больше водорода из гидразина по сравнению с аналогичными катализаторами без никеля. Этот катализатор показал высокую стабильность, что делает его перспективным для промышленного использования. Кроме того, этот катализатор был стабилен и сохранял свою активность после нескольких циклов реакции.
Таким образом, ученые показали, что карбонатные комплексы платины — перспективные прекурсоры для получения катализаторов на основе платины. Они имеют ряд преимуществ перед традиционными прекурсорами: они безопасны, доступны, легко контролируются и не требуют дополнительной очистки. Благодаря этим преимуществам, карбонатные комплексы платины могут быть использованы для получения катализаторов с различными свойствами, добавляя разные носители или металлические сплавы. Такие катализаторы могут применяться в химических процессах, связанных с использованием водорода и других газов, и играть важную роль в развитии экологически чистых технологий.
Это исследование стало частью более широкого проекта по изучению химии и физики платиновых соединений, который проводится в Институте неорганической химии имени А. В. Николаева под руководством доктора химических наук Павла Поповецкого. Целью проекта является создание новых материалов на основе платины для различных приложений, в том числе для энергетики, медицины и наноэлектроники.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Турецкие археологи обнаружили затерянный мост, способный переписать всю раннюю историю человечества
Оказалось, что научная сенсация все это время... валялась у ученых буквально под ногами...

Эксперты говорят: изобретение ученых из Перми решает одну из самых серьезных и опасных проблем в современной авиации
Американцы потратили на это десятки лет и миллиарды долларов, но открытие сделали в России...

ДНК из ниоткуда: 6000-летние останки в Колумбии ни с кем совпадают по генам. Вообще.
Если у этих людей нет ни предков, ни потомков, то кто они такие?...

В самом большом кратере Луны происходит что-то очень странное
Поэтому астронавты планируют туда заглянуть в самое ближайшее время...

Секретные спутники Илона Маска заподозрили в использовании запрещенных сигналов
Что это значит для России и чем могут ответить наши военные?...

Археологи поражены: 404 тысячи лет назад «римляне» спокойно разделали гигантского слона... 3-сантиметровыми ножичками
Получается, что древние охотники могли справиться с самым большим животным в Европе буквально голыми руками?...

Ученые обнаружили на Кавказе «ужасного» хищника, способного дробить черепа с одного укуса
Почему же 400-килограммовый монстр, побеждавший медведей и саблезубых тигров, все-таки исчез с лица планеты?...

«Черный ящик» раскрыл тайну летучей мыши, пожирающей птиц прямо в полете
Ученые совершенно не ожидали, что рукокрылый властелин ночного неба по свирепости и охотничьему мастерству даст фору даже соколам...

2700 дней понадобилось ученым, чтобы, наконец, раскрыть главную тайну гигантских скатов
Оказалось, что манты ныряют на 1250-метровую глубину вовсе не за едой и не спасаясь от хищников...

Египетская «Зона 51»: Почему власти полностью засекретили «четвертую пирамиду»?
С 60-х годов ХХ века на объект Завиет-эль-Эриан не попал ни один ученый. Что скрывают военные за колючей проволокой?...

В ближайшие 100 лет Юпитер «выстрелит» в Землю как минимум 342 раза
Российские ученые рассчитали: ближайшее «прицеливание» состоится уже 2031 году. Что вообще нам ожидать?...

Мог ли великий художник Клод Моне видеть в ультрафиолетовом спектре, как пчела?
Историки уверены: после операции на глазах с французским живописцем стали происходит очень странные вещи...

Нападение акул, считавшихся абсолютно безобидными, вызвало шок у морских биологов
Кто виноват в этой ужасной трагедии? И почему эксперты говорят, что это только начало?...