Студенты из Варшавы перевернули кота Шредингера с ног на голову
Преобразование Фурье — математическая операция, которая позволяет переходить от описания волны во времени к описанию ее спектра в частотах. Например, с помощью преобразования Фурье можно разделить полезный сигнал от шума, определить химический состав веществ или измерить скорость и расстояние до объектов.
Но что, если мы хотим перейти от времени к частотам не полностью, а частично? Тогда нам нужно дробное преобразование Фурье (ДПФ) — обобщение обычного преобразования Фурье, которое позволяет получить некоторое промежуточное представление волны между временем и частотой. Это может быть полезно для разных целей, например, для фильтрации шума, спектроскопии, телекоммуникации и распознавания образов.
ДПФ было введено еще в 1940-х годах, но не получило широкого признания в области обработки сигналов до 1990-х годов. С тех пор возрос интерес к расширению теоремы Шеннона о выборке для сигналов, которые ограничены по полосе в дробном фурье-пространстве. Это означает, что можно выбирать такие сигналы с меньшей частотой, чем обычно, не теряя информации.
Однако ДПФ не так просто реализовать на практике, особенно если речь идет о квантовых состояниях света. Квантовый свет — это свет, который рассматривается не как классическая волна, а как поток квантов — фотонов. Квантовый свет имеет такие свойства, как суперпозиция, запутанность и неопределенность, которые могут быть использованы для решения различных задач квантовой оптики и информатики.
Студенты факультета физики Варшавского университета (УВ) и исследователи из Центра квантовых оптических технологий (QOT) разработали новаторский метод, который позволяет выполнять ДПФ оптических импульсов с помощью квантовой памяти. Это достижение уникально в мировом масштабе, так как команда стала первой, которая продемонстрировала экспериментальную реализацию этого преобразования в такой системе.
Для того чтобы выполнить ДПФ оптических импульсов, студенты использовали двойной импульс — очень хрупкое состояние света, которое легко теряет свои квантовые свойства под влиянием внешних факторов. Поэтому его часто сравнивают со знаменитым котом Шрёдингера — макроскопической суперпозиции состояний «жив» и «мертв», которую почти невозможно достичь экспериментально.
Двойной импульс — суперпозиция двух импульсов разной длительности и частоты, которые расположены на некотором расстоянии друг от друга во времени. Такой импульс можно представить как двух котов Шрёдингера, один из которых жив, а другой мертв. Если мы измерим длительность или частоту такого импульса, мы узнаем, какого кота мы наблюдаем — живого или мертвого. Но если мы не измеряем его, то кот находится в суперпозиции обоих состояний.
Для того, чтобы повернуть такой импульс в пространстве времени-частоты, то есть выполнить ДПФ, нужно использовать специальные оптические элементы — временные и частотные линзы. Они позволяют преобразовывать длительность импульса в его спектральное распределение, или наоборот, выполняя Фурье-преобразование в пространстве времени и частоты. Правильный выбор степеней таких линз позволяет выполнить ДПФ.
Временная линза — оптический элемент, который изменяет фазу света в зависимости от времени прихода фотонов. Частотная линза изменяет фазу света в зависимости от его частоты. Обе линзы можно реализовать с помощью нелинейных сред или модуляции интенсивности света.
Для обработки сигнала студенты использовали квантовую память — или точнее, память с возможностью обработки квантового света — на основе облака атомов рубидия, помещенных в магнито-оптическую ловушку. Атомы были охлаждены до температуры десятых долей миллионных градуса выше абсолютного нуля. Память была помещена в меняющееся магнитное поле, позволяющее хранить компоненты разных частот в разных частях облака. Импульс подвергался временной линзе при записи и чтении, а частотной линзе при хранении.
Устройство, разработанное в УВ, позволяет реализовывать такие линзы в очень широком диапазоне параметров и в программируемом режиме. Таким образом, оно может выполнять ДПФ оптических импульсов с любым углом поворота в пространстве времени-частоты.
Прежде чем применять метод в телекоммуникациях напрямую, необходимо сначала перенести его на другие длины волн и диапазоны параметров. Однако ДПФ может оказаться ключевым для оптических приемников в современных сетях, включая оптические спутниковые каналы. Квантовый процессор света, разработанный в УВ, позволяет находить и тестировать такие новые протоколы эффективным способом.
Но что, если мы хотим перейти от времени к частотам не полностью, а частично? Тогда нам нужно дробное преобразование Фурье (ДПФ) — обобщение обычного преобразования Фурье, которое позволяет получить некоторое промежуточное представление волны между временем и частотой. Это может быть полезно для разных целей, например, для фильтрации шума, спектроскопии, телекоммуникации и распознавания образов.
ДПФ было введено еще в 1940-х годах, но не получило широкого признания в области обработки сигналов до 1990-х годов. С тех пор возрос интерес к расширению теоремы Шеннона о выборке для сигналов, которые ограничены по полосе в дробном фурье-пространстве. Это означает, что можно выбирать такие сигналы с меньшей частотой, чем обычно, не теряя информации.
Однако ДПФ не так просто реализовать на практике, особенно если речь идет о квантовых состояниях света. Квантовый свет — это свет, который рассматривается не как классическая волна, а как поток квантов — фотонов. Квантовый свет имеет такие свойства, как суперпозиция, запутанность и неопределенность, которые могут быть использованы для решения различных задач квантовой оптики и информатики.
Студенты факультета физики Варшавского университета (УВ) и исследователи из Центра квантовых оптических технологий (QOT) разработали новаторский метод, который позволяет выполнять ДПФ оптических импульсов с помощью квантовой памяти. Это достижение уникально в мировом масштабе, так как команда стала первой, которая продемонстрировала экспериментальную реализацию этого преобразования в такой системе.
Как перевернуть кота Шрёдингера?
Для того чтобы выполнить ДПФ оптических импульсов, студенты использовали двойной импульс — очень хрупкое состояние света, которое легко теряет свои квантовые свойства под влиянием внешних факторов. Поэтому его часто сравнивают со знаменитым котом Шрёдингера — макроскопической суперпозиции состояний «жив» и «мертв», которую почти невозможно достичь экспериментально.
Двойной импульс — суперпозиция двух импульсов разной длительности и частоты, которые расположены на некотором расстоянии друг от друга во времени. Такой импульс можно представить как двух котов Шрёдингера, один из которых жив, а другой мертв. Если мы измерим длительность или частоту такого импульса, мы узнаем, какого кота мы наблюдаем — живого или мертвого. Но если мы не измеряем его, то кот находится в суперпозиции обоих состояний.
Для того, чтобы повернуть такой импульс в пространстве времени-частоты, то есть выполнить ДПФ, нужно использовать специальные оптические элементы — временные и частотные линзы. Они позволяют преобразовывать длительность импульса в его спектральное распределение, или наоборот, выполняя Фурье-преобразование в пространстве времени и частоты. Правильный выбор степеней таких линз позволяет выполнить ДПФ.
Временная линза — оптический элемент, который изменяет фазу света в зависимости от времени прихода фотонов. Частотная линза изменяет фазу света в зависимости от его частоты. Обе линзы можно реализовать с помощью нелинейных сред или модуляции интенсивности света.
Для обработки сигнала студенты использовали квантовую память — или точнее, память с возможностью обработки квантового света — на основе облака атомов рубидия, помещенных в магнито-оптическую ловушку. Атомы были охлаждены до температуры десятых долей миллионных градуса выше абсолютного нуля. Память была помещена в меняющееся магнитное поле, позволяющее хранить компоненты разных частот в разных частях облака. Импульс подвергался временной линзе при записи и чтении, а частотной линзе при хранении.
Устройство, разработанное в УВ, позволяет реализовывать такие линзы в очень широком диапазоне параметров и в программируемом режиме. Таким образом, оно может выполнять ДПФ оптических импульсов с любым углом поворота в пространстве времени-частоты.
Прежде чем применять метод в телекоммуникациях напрямую, необходимо сначала перенести его на другие длины волн и диапазоны параметров. Однако ДПФ может оказаться ключевым для оптических приемников в современных сетях, включая оптические спутниковые каналы. Квантовый процессор света, разработанный в УВ, позволяет находить и тестировать такие новые протоколы эффективным способом.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
От кабанов до беспилотников: гражданские радары из Китая сделали неожиданную карьеру в российской армии
Почему украинские эксперты жалуются, что россияне ведут войну не по правилам?...
Монгольский феномен: почему русский язык в этой стране не собирается сдавать позиции?
Новое исследование показало: русский уже победил китайский, теперь пора «разобраться» с английским...
20-летнее исследование увенчалось полным успехом: ученые научились запускать самовосстановление... в сердце
Эксперты говорят: пробуждение спящих генов опровергает все медицинские догмы и дает надежду миллионам людей по всему миру...
Археологи обнаружили загадочную 2000-летнюю подземную комнату в Шотландии
Находка вызвала жаркие споры среди историков, но тайна до сих пор не раскрыта...
Уральские ученые заставили «говорить» кости жителей легендарного Аркаима
Возможно, наука стала на шаг ближе к раскрытию главной тайны самого загадочного города на территории России...
Русская ученая считает, что это животное поможет людям... жить 200 лет
Полярные киты могут жить столетиями, и теперь биологи знают их секрет...
Автомобиль Tesla снова в центре громкой истории: В него на полном ходу, похоже, врезался... метеорит
Эксперты говорят: если все подтвердится, это будет первый такой случай истории...
Российский астроном открыл 16-ю комету: Почему именно она поразила ученых?
Успеют ли астрофизики раскрыть все тайны gb00810, ведь у них всего несколько недель...
Почему ученые по всему миру восприняли в штыки план Илона Маска «затемнить Солнце»?
В ответ миллиардер назвал экспертов паникерами, которые мешают ему помочь человечеству решить одну из главных проблем современности...
В октябре 2025 года ураган Халонг на Аляске унес тысячи древних артефактов в океан
Ученые называют случившееся крупнейшей археологической катастрофой за последнее время. Будет ли восстановлено наследие целого народа?...
Пока мы искали внеземной разум на далеких звездах, аппараты пришельцев могли находиться у нас под носом
Новое исследование рассказывает, почему традиционные стратегии поиска братьев по разуму — это провал. Надо действовать по-другому...