В поисках темной стороны Вселенной: миссия Euclid
С космодрома на мысе Канаверал во Флориде успешно стартовала ракета-носитель Falcon 9 компании SpaceX. На борту этой ракеты находился особенный груз – космический телескоп Euclid Европейского космического агентства (ESA). Этот аппарат стал результатом более чем десятилетней работы ученых и инженеров из разных стран и организаций. Его стоимость составила около миллиарда евро.
Цель миссии Euclid – исследовать состав и эволюцию темной стороны Вселенной, которая составляет большую часть ее энергетического баланса. Телескоп будет создавать подробную карту крупномасштабной структуры Вселенной в пространстве и времени, наблюдая за миллиардами галактик на расстоянии до 10 миллиардов световых лет, охватывая более трети небесной сферы. Euclid будет изучать, как Вселенная расширялась и как формировались ее структуры в течение космической истории, раскрывая больше информации о роли гравитации и природе темной энергии и темной материи.
Первая ступень ракеты Falcon 9 успешно отделилась от второй и совершила посадку на плавучей платформе в Атлантическом океане. Вторая ступень дважды включила двигатели, чтобы вывести аппарат на нужную траекторию. Через несколько часов после запуска ESA получило первые сигналы с телескопа. Все его системы работали нормально.
Euclid направился к особому месту в космосе – точке Лагранжа L2 между Солнцем и Землей. Это точка относительного равновесия гравитационных сил двух небесных тел, где можно разместить спутник так, чтобы он всегда находился на одной линии с ними. Точка L2 расположена на расстоянии 1,5 миллиона километров от Земли — почти четыре раза дальше, чем Луна.
Точка считается идеальным местом для внеатмосферной астрономии, так как там можно избежать влияния земной атмосферы и светового загрязнения, а также минимизировать нагрев от Солнца и Земли. Кроме того, там можно обеспечить стабильную связь с Землей и постоянную ориентацию телескопа. В точке L2 уже находятся другие космические обсерватории, такие как Planck, Herschel и James Webb Space Telescope.
До точки L2 Euclid доберется за четыре недели, используя свои собственные двигатели. По пути он будет проверять и настраивать свои приборы, чтобы подготовиться к научным наблюдениям. Ожидается, что миссия Euclid продлится шесть лет, в течение которых телескоп будет собирать огромное количество данных о галактиках и кластерах галактик в разных эпохах развития Вселенной.
Что интересного может увидеть Euclid в темноте космоса? Дело в том, что обычная материя, из которой состоят звезды, планеты и мы сами, составляет всего около 5% от всего содержимого Вселенной. Остальные 95% приходятся на две загадочные сущности – темную материю и темную энергию.
Темная материя — неизвестный вид материи, который не излучает и не поглощает свет, но оказывает гравитационное воздействие на обычную материю. Темная материя образует невидимые скелеты, вокруг которых собираются галактики и кластеры галактик. Без темной материи эти структуры не могли бы сформироваться и удерживаться вместе. Темная материя составляет около 27% от всей массы-энергии Вселенной.
Темная энергия — еще более таинственная сила, которая противодействует гравитации и вызывает ускоренное расширение Вселенной. Темная энергия начала доминировать над гравитацией примерно 6 миллиардов лет назад, когда Вселенная достигла определенного размера. С тех пор скорость расширения Вселенной постоянно растет, и в будущем это может привести к ее разрыву или затуханию. Темная энергия составляет около 68% от всей массы-энергии Вселенной.
Как Euclid сможет измерить влияние темной материи и темной энергии на Вселенную? Для этого он использует два основных метода: слабое гравитационное линзирование и барионные акустические осцилляции.
Слабое гравитационное линзирование — явление, при котором свет от далеких галактик искривляется под действием гравитационного поля ближайших кластеров галактик, содержащих темную материю. Это приводит к тому, что изображения далеких галактик выглядят искаженными и увеличенными. Измеряя степень этого искажения, можно определить распределение темной материи в пространстве и ее влияние на формирование структур.
Барионные акустические осцилляции — колебания плотности обычной материи (барионов) в ранней Вселенной, вызванные звуковыми волнами, распространяющимися в горячей плазме. Эти колебания оставили след в распределении галактик, который можно обнаружить с помощью спектроскопии. Измеряя расстояние между галактиками и их красное смещение (сдвиг спектра света к красному концу из-за расширения Вселенной), можно определить скорость и характер этого расширения, а также роль темной энергии в нем.
Для реализации этих методов Euclid оснащен тремя инструментами: трехзеркальным 1,2-метровым телескопом Корша, блоком формирования оптических изображений VISible imager (VIS) и инфракрасным спектрометром Near-Infrared Spectrometer and Photometer (NISP). Благодаря этим приборам аппарат способен одновременно обследовать треть видимого ночного неба в видимом и ближнем инфракрасном диапазонах. VIS будет снимать изображения галактик с высоким разрешением для анализа гравитационного линзирования, а NISP будет измерять спектры галактик для определения их красного смещения и барионных акустических осцилляций.
Цель миссии Euclid – исследовать состав и эволюцию темной стороны Вселенной, которая составляет большую часть ее энергетического баланса. Телескоп будет создавать подробную карту крупномасштабной структуры Вселенной в пространстве и времени, наблюдая за миллиардами галактик на расстоянии до 10 миллиардов световых лет, охватывая более трети небесной сферы. Euclid будет изучать, как Вселенная расширялась и как формировались ее структуры в течение космической истории, раскрывая больше информации о роли гравитации и природе темной энергии и темной материи.
Первая ступень ракеты Falcon 9 успешно отделилась от второй и совершила посадку на плавучей платформе в Атлантическом океане. Вторая ступень дважды включила двигатели, чтобы вывести аппарат на нужную траекторию. Через несколько часов после запуска ESA получило первые сигналы с телескопа. Все его системы работали нормально.
Euclid направился к особому месту в космосе – точке Лагранжа L2 между Солнцем и Землей. Это точка относительного равновесия гравитационных сил двух небесных тел, где можно разместить спутник так, чтобы он всегда находился на одной линии с ними. Точка L2 расположена на расстоянии 1,5 миллиона километров от Земли — почти четыре раза дальше, чем Луна.
Точка считается идеальным местом для внеатмосферной астрономии, так как там можно избежать влияния земной атмосферы и светового загрязнения, а также минимизировать нагрев от Солнца и Земли. Кроме того, там можно обеспечить стабильную связь с Землей и постоянную ориентацию телескопа. В точке L2 уже находятся другие космические обсерватории, такие как Planck, Herschel и James Webb Space Telescope.
До точки L2 Euclid доберется за четыре недели, используя свои собственные двигатели. По пути он будет проверять и настраивать свои приборы, чтобы подготовиться к научным наблюдениям. Ожидается, что миссия Euclid продлится шесть лет, в течение которых телескоп будет собирать огромное количество данных о галактиках и кластерах галактик в разных эпохах развития Вселенной.
Что интересного может увидеть Euclid в темноте космоса? Дело в том, что обычная материя, из которой состоят звезды, планеты и мы сами, составляет всего около 5% от всего содержимого Вселенной. Остальные 95% приходятся на две загадочные сущности – темную материю и темную энергию.
Темная материя — неизвестный вид материи, который не излучает и не поглощает свет, но оказывает гравитационное воздействие на обычную материю. Темная материя образует невидимые скелеты, вокруг которых собираются галактики и кластеры галактик. Без темной материи эти структуры не могли бы сформироваться и удерживаться вместе. Темная материя составляет около 27% от всей массы-энергии Вселенной.
Темная энергия — еще более таинственная сила, которая противодействует гравитации и вызывает ускоренное расширение Вселенной. Темная энергия начала доминировать над гравитацией примерно 6 миллиардов лет назад, когда Вселенная достигла определенного размера. С тех пор скорость расширения Вселенной постоянно растет, и в будущем это может привести к ее разрыву или затуханию. Темная энергия составляет около 68% от всей массы-энергии Вселенной.
Инструменты для измерений
Как Euclid сможет измерить влияние темной материи и темной энергии на Вселенную? Для этого он использует два основных метода: слабое гравитационное линзирование и барионные акустические осцилляции.
Слабое гравитационное линзирование — явление, при котором свет от далеких галактик искривляется под действием гравитационного поля ближайших кластеров галактик, содержащих темную материю. Это приводит к тому, что изображения далеких галактик выглядят искаженными и увеличенными. Измеряя степень этого искажения, можно определить распределение темной материи в пространстве и ее влияние на формирование структур.
Барионные акустические осцилляции — колебания плотности обычной материи (барионов) в ранней Вселенной, вызванные звуковыми волнами, распространяющимися в горячей плазме. Эти колебания оставили след в распределении галактик, который можно обнаружить с помощью спектроскопии. Измеряя расстояние между галактиками и их красное смещение (сдвиг спектра света к красному концу из-за расширения Вселенной), можно определить скорость и характер этого расширения, а также роль темной энергии в нем.
Для реализации этих методов Euclid оснащен тремя инструментами: трехзеркальным 1,2-метровым телескопом Корша, блоком формирования оптических изображений VISible imager (VIS) и инфракрасным спектрометром Near-Infrared Spectrometer and Photometer (NISP). Благодаря этим приборам аппарат способен одновременно обследовать треть видимого ночного неба в видимом и ближнем инфракрасном диапазонах. VIS будет снимать изображения галактик с высоким разрешением для анализа гравитационного линзирования, а NISP будет измерять спектры галактик для определения их красного смещения и барионных акустических осцилляций.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Главная тайна Черного моря разгадана: Ученые рассказали, почему там на дне очень прозрачная пресная вода
Чтобы найти ответ, исследователям пришлось заглянуть на 8 тысяч лет назад...
Секрет 14-го моря России: куда оно пропало и почему о нем снова заговорили?
Эксперты напоминают: Кроме Печорского, у России есть и 15-е «забытое» море, и оно тоже возвращается на карты...
Мегамонстры с 7-го этажа: в древних океанах шла такая война хищников, где у современных косаток не было бы ни единого шанса
Ученые рассказали, куда исчезли «боги» мезозойских морей и почему сейчас их существование было бы невозможно...
Мощнее леса в десятки раз: в ЮАР нашли «живые камни», которые выкачивают CO₂ с бешеной скоростью
Микробиалиты могли бы спасти Землю от потепления, но у этих «каменных насосов» есть один нюанс...
ДНК 4000-летней овцы оказалось ключом к древней тайне, стоившей жизни миллионам
Поразительно, но археологи нашли штамм древней чумы, кошмаривший всю Евразию, в самом таинственном российском городе — Аркаиме. Почему же так получилось?...
Супертелескоп James Webb только запутал ученых, а планета-«близнец» Земли стала еще загадочнее
Эксперты рассказали, почему самый мощный телескоп в истории не смог разобраться с атмосферой TRAPPIST-1e. Аппарат не виноват. Но тогда кто?...
Грядет научный прорыв: Зачем в последние годы ученые по всему миру создают очень странные компьютеры?
Новые аппараты… не просто живые: они стирают различия между ЭВМ и человеческим мозгом...
Новое исследование показало: если бы не этот «российский ген», древние люди вряд ли бы заселили Америку
Ученые рассказали, почему Алтай в ДНК — это главный секрет феноменального здоровья индейцев...
20-летнее наблюдение со спутников «сломало климат»: Теперь ученым придется полностью менять все теории
Зато теперь понятно, почему в двух близких городах могут быть... разные времена года...
Она нам больше не праматерь! Почему легендарную Люси могут «изгнать» из числа наших предков?
Ведущие антропологи мира схлестнулись в настоящей войне. Кто же окажется победителем?...
3500-летние рисунки на камнях российского острова Вайгач грозят переписать древнюю историю Арктики
Ученые рассказали, кем были мореходы из забытой цивилизации Русского Севера...
Американский авиалайнер резко рухнул на 7000 метров: эксперты считают виновником сбоя космические лучи из глубин Галактики
В этот раз катастрофа не произошла, но под угрозой электроника самолетов, космических аппаратов и даже автомобилей. Почему так происходит?...
Золотой колокольчик из Эрмитажа: почему Владимир Путин запретил выставлять этот артефакт за границей?
Сколько сокровищ потеряла Россия в последнее время, пока не поняла, что договоры с Западом не стоят даже бумаги, на которой написаны?...