В поисках темной стороны Вселенной: миссия Euclid
С космодрома на мысе Канаверал во Флориде успешно стартовала ракета-носитель Falcon 9 компании SpaceX. На борту этой ракеты находился особенный груз – космический телескоп Euclid Европейского космического агентства (ESA). Этот аппарат стал результатом более чем десятилетней работы ученых и инженеров из разных стран и организаций. Его стоимость составила около миллиарда евро.
Цель миссии Euclid – исследовать состав и эволюцию темной стороны Вселенной, которая составляет большую часть ее энергетического баланса. Телескоп будет создавать подробную карту крупномасштабной структуры Вселенной в пространстве и времени, наблюдая за миллиардами галактик на расстоянии до 10 миллиардов световых лет, охватывая более трети небесной сферы. Euclid будет изучать, как Вселенная расширялась и как формировались ее структуры в течение космической истории, раскрывая больше информации о роли гравитации и природе темной энергии и темной материи.
Первая ступень ракеты Falcon 9 успешно отделилась от второй и совершила посадку на плавучей платформе в Атлантическом океане. Вторая ступень дважды включила двигатели, чтобы вывести аппарат на нужную траекторию. Через несколько часов после запуска ESA получило первые сигналы с телескопа. Все его системы работали нормально.
Euclid направился к особому месту в космосе – точке Лагранжа L2 между Солнцем и Землей. Это точка относительного равновесия гравитационных сил двух небесных тел, где можно разместить спутник так, чтобы он всегда находился на одной линии с ними. Точка L2 расположена на расстоянии 1,5 миллиона километров от Земли — почти четыре раза дальше, чем Луна.
Точка считается идеальным местом для внеатмосферной астрономии, так как там можно избежать влияния земной атмосферы и светового загрязнения, а также минимизировать нагрев от Солнца и Земли. Кроме того, там можно обеспечить стабильную связь с Землей и постоянную ориентацию телескопа. В точке L2 уже находятся другие космические обсерватории, такие как Planck, Herschel и James Webb Space Telescope.
До точки L2 Euclid доберется за четыре недели, используя свои собственные двигатели. По пути он будет проверять и настраивать свои приборы, чтобы подготовиться к научным наблюдениям. Ожидается, что миссия Euclid продлится шесть лет, в течение которых телескоп будет собирать огромное количество данных о галактиках и кластерах галактик в разных эпохах развития Вселенной.
Что интересного может увидеть Euclid в темноте космоса? Дело в том, что обычная материя, из которой состоят звезды, планеты и мы сами, составляет всего около 5% от всего содержимого Вселенной. Остальные 95% приходятся на две загадочные сущности – темную материю и темную энергию.
Темная материя — неизвестный вид материи, который не излучает и не поглощает свет, но оказывает гравитационное воздействие на обычную материю. Темная материя образует невидимые скелеты, вокруг которых собираются галактики и кластеры галактик. Без темной материи эти структуры не могли бы сформироваться и удерживаться вместе. Темная материя составляет около 27% от всей массы-энергии Вселенной.
Темная энергия — еще более таинственная сила, которая противодействует гравитации и вызывает ускоренное расширение Вселенной. Темная энергия начала доминировать над гравитацией примерно 6 миллиардов лет назад, когда Вселенная достигла определенного размера. С тех пор скорость расширения Вселенной постоянно растет, и в будущем это может привести к ее разрыву или затуханию. Темная энергия составляет около 68% от всей массы-энергии Вселенной.
Как Euclid сможет измерить влияние темной материи и темной энергии на Вселенную? Для этого он использует два основных метода: слабое гравитационное линзирование и барионные акустические осцилляции.
Слабое гравитационное линзирование — явление, при котором свет от далеких галактик искривляется под действием гравитационного поля ближайших кластеров галактик, содержащих темную материю. Это приводит к тому, что изображения далеких галактик выглядят искаженными и увеличенными. Измеряя степень этого искажения, можно определить распределение темной материи в пространстве и ее влияние на формирование структур.
Барионные акустические осцилляции — колебания плотности обычной материи (барионов) в ранней Вселенной, вызванные звуковыми волнами, распространяющимися в горячей плазме. Эти колебания оставили след в распределении галактик, который можно обнаружить с помощью спектроскопии. Измеряя расстояние между галактиками и их красное смещение (сдвиг спектра света к красному концу из-за расширения Вселенной), можно определить скорость и характер этого расширения, а также роль темной энергии в нем.
Для реализации этих методов Euclid оснащен тремя инструментами: трехзеркальным 1,2-метровым телескопом Корша, блоком формирования оптических изображений VISible imager (VIS) и инфракрасным спектрометром Near-Infrared Spectrometer and Photometer (NISP). Благодаря этим приборам аппарат способен одновременно обследовать треть видимого ночного неба в видимом и ближнем инфракрасном диапазонах. VIS будет снимать изображения галактик с высоким разрешением для анализа гравитационного линзирования, а NISP будет измерять спектры галактик для определения их красного смещения и барионных акустических осцилляций.
Цель миссии Euclid – исследовать состав и эволюцию темной стороны Вселенной, которая составляет большую часть ее энергетического баланса. Телескоп будет создавать подробную карту крупномасштабной структуры Вселенной в пространстве и времени, наблюдая за миллиардами галактик на расстоянии до 10 миллиардов световых лет, охватывая более трети небесной сферы. Euclid будет изучать, как Вселенная расширялась и как формировались ее структуры в течение космической истории, раскрывая больше информации о роли гравитации и природе темной энергии и темной материи.
Первая ступень ракеты Falcon 9 успешно отделилась от второй и совершила посадку на плавучей платформе в Атлантическом океане. Вторая ступень дважды включила двигатели, чтобы вывести аппарат на нужную траекторию. Через несколько часов после запуска ESA получило первые сигналы с телескопа. Все его системы работали нормально.
Euclid направился к особому месту в космосе – точке Лагранжа L2 между Солнцем и Землей. Это точка относительного равновесия гравитационных сил двух небесных тел, где можно разместить спутник так, чтобы он всегда находился на одной линии с ними. Точка L2 расположена на расстоянии 1,5 миллиона километров от Земли — почти четыре раза дальше, чем Луна.
Точка считается идеальным местом для внеатмосферной астрономии, так как там можно избежать влияния земной атмосферы и светового загрязнения, а также минимизировать нагрев от Солнца и Земли. Кроме того, там можно обеспечить стабильную связь с Землей и постоянную ориентацию телескопа. В точке L2 уже находятся другие космические обсерватории, такие как Planck, Herschel и James Webb Space Telescope.
До точки L2 Euclid доберется за четыре недели, используя свои собственные двигатели. По пути он будет проверять и настраивать свои приборы, чтобы подготовиться к научным наблюдениям. Ожидается, что миссия Euclid продлится шесть лет, в течение которых телескоп будет собирать огромное количество данных о галактиках и кластерах галактик в разных эпохах развития Вселенной.
Что интересного может увидеть Euclid в темноте космоса? Дело в том, что обычная материя, из которой состоят звезды, планеты и мы сами, составляет всего около 5% от всего содержимого Вселенной. Остальные 95% приходятся на две загадочные сущности – темную материю и темную энергию.
Темная материя — неизвестный вид материи, который не излучает и не поглощает свет, но оказывает гравитационное воздействие на обычную материю. Темная материя образует невидимые скелеты, вокруг которых собираются галактики и кластеры галактик. Без темной материи эти структуры не могли бы сформироваться и удерживаться вместе. Темная материя составляет около 27% от всей массы-энергии Вселенной.
Темная энергия — еще более таинственная сила, которая противодействует гравитации и вызывает ускоренное расширение Вселенной. Темная энергия начала доминировать над гравитацией примерно 6 миллиардов лет назад, когда Вселенная достигла определенного размера. С тех пор скорость расширения Вселенной постоянно растет, и в будущем это может привести к ее разрыву или затуханию. Темная энергия составляет около 68% от всей массы-энергии Вселенной.
Инструменты для измерений
Как Euclid сможет измерить влияние темной материи и темной энергии на Вселенную? Для этого он использует два основных метода: слабое гравитационное линзирование и барионные акустические осцилляции.
Слабое гравитационное линзирование — явление, при котором свет от далеких галактик искривляется под действием гравитационного поля ближайших кластеров галактик, содержащих темную материю. Это приводит к тому, что изображения далеких галактик выглядят искаженными и увеличенными. Измеряя степень этого искажения, можно определить распределение темной материи в пространстве и ее влияние на формирование структур.
Барионные акустические осцилляции — колебания плотности обычной материи (барионов) в ранней Вселенной, вызванные звуковыми волнами, распространяющимися в горячей плазме. Эти колебания оставили след в распределении галактик, который можно обнаружить с помощью спектроскопии. Измеряя расстояние между галактиками и их красное смещение (сдвиг спектра света к красному концу из-за расширения Вселенной), можно определить скорость и характер этого расширения, а также роль темной энергии в нем.
Для реализации этих методов Euclid оснащен тремя инструментами: трехзеркальным 1,2-метровым телескопом Корша, блоком формирования оптических изображений VISible imager (VIS) и инфракрасным спектрометром Near-Infrared Spectrometer and Photometer (NISP). Благодаря этим приборам аппарат способен одновременно обследовать треть видимого ночного неба в видимом и ближнем инфракрасном диапазонах. VIS будет снимать изображения галактик с высоким разрешением для анализа гравитационного линзирования, а NISP будет измерять спектры галактик для определения их красного смещения и барионных акустических осцилляций.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Резкое сокращение численности летучих мышей вызвало смерти… тысяч американских детей
Зловещая взаимосвязь выявилась совсем недавно....
Антарктида достигла точки невозврата?
Выводы ведущих ученых разнятся....
Японский угорь: съеден, но не сломлен
Обнаружен поразительный способ убегать даже из желудка хищника....
Устройство причудливой формы признано самым креативным и полезным девайсом года
Большинство английских ученых пришли в восторг от этого прибора....
Утраченную технологию кораблестроения возрастом 3500 лет заново открыли в 1950-х
Догреческие жители Крита были удивительно искусными корабелами....
В Польше нашли древнюю могилу ребёнка-«вампира»
На страшное захоронение наткнулись в Хелме....
Интернет-кошмар для детей и подростков в Австралии
Правительство закрывает малолетним доступ к соцсетям....
Встретимся в «Кафе „Белая акула“»
Ученые открыли главный секрет самых больших хищных рыб....
Шнобелевскую премию присудили за ракеты с голубиным наведением и дышащих задом свиней
Сюр, достойный научной премии за сомнительные достижения....
Как зомби: частицы организма продолжили существование между жизнью и смертью
Странные клетки прозвали ксено- и антропботами....
Ученые обнаружили «смайлик» на Марсе
Эта «улыбка» может намекать на научную сенсацию....
Водоросли: ключ к бесконечному источнику энергии?
Ученые считают, что новая технология радикально изменит мир....
Деревяшка возрастом 1300 лет оказалась частью японской таблицы умножения
Но придумали такой «калькулятор» гораздо раньше — в Китае....
Кто достоин пособия: Теперь решает искусственный интелект
Суд не сможет отменить вероятные ошибки....
Оказалось, что угловатая акула со свиной мордой хрюкает при поимке
А еще эта уникальная рыба просто обожает яйца....
Шкурный вопрос: Скандинавы мастерили лодки из кожи ещё в эпоху неолита
А иначе картина морских походов не складывается....