
Наночастицы маггемита: новый материал для диагностики и лечения заболеваний
Оксид железа — одно из самых распространенных веществ на Земле, которое имеет множество форм и свойств. Одна из таких форм — маггемит, или гамма-оксид железа, обладает уникальными магнитными характеристиками, которые делают его востребованным материалом в различных областях науки и техники. В частности, наночастицы маггемита, имеющие размеры порядка нескольких нанометров, могут применяться для диагностики и лечения различных заболеваний, а также для очистки воды от органических загрязнителей.
Наночастицы маггемита — это крошечные кристаллы оксида железа, которые имеют спинельную структуру и состоят из двух типов ионов железа: Fe2+ и Fe3+. Эти ионы распределены по разным позициям в кристаллической решетке и образуют магнитные моменты, которые направлены в противоположные стороны. В результате образуется так называемый антиферромагнетизм, когда суммарный магнитный момент кристалла равен нулю. Однако при уменьшении размеров кристаллов до нанометровых величин происходит эффект суперпараметризма, когда магнитный момент кристалла становится зависимым от внешнего магнитного поля. Таким образом, наночастицы маггемита можно управлять с помощью магнитных полей, что дает им большие возможности для практического использования.
Наночастицы маггемита имеют ряд преимуществ перед другими формами оксида железа, особенно в биомедицине. Во-первых, они имеют меньший относительно сосудов человека размер, что позволяет им легко проникать в ткани и органы, не вызывая токсичности или иммунного ответа. Во-вторых, они обладают способностью к фотокатализу, то есть ускорению химических реакций под действием света. Это свойство может быть использовано для очистки воды от органических загрязнителей, таких как пестициды, лекарства или красители. Также это свойство может быть использовано для лечения раковых опухолей, когда наночастицы под действием света выделяют активные формы кислорода, которые разрушают раковые клетки, при этом уменьшая дозу облучения. В-третьих, наночастицы маггемита обладают высокой чувствительностью к магнитному полю, что позволяет им использоваться в качестве контрастных агентов для магнитно-резонансной томографии (МРТ) — одного из самых точных и безопасных методов диагностики заболеваний. МРТ основана на измерении сигнала, который возникает при возбуждении водородных атомов в тканях человека переменным магнитным полем. Наночастицы маггемита, введенные в организм, усиливают этот сигнал и делают изображение более контрастным и четким.
Однако получение наночастиц маггемита высокого качества не такое простое дело, как может показаться. Существующие химические методы синтеза дают возможность получить различные формы маггемита: микрозерна, пленки или наночастицы при достаточно высоких температурах, однако для всех указанных методов существует проблема, связанная с необходимостью отделения маггемита от других сопутствующих фаз оксида железа, таких как гематит или магнетит. Кроме того, эти методы требуют использования дорогостоящих реактивов и растворителей, которые могут оставаться на поверхности наночастиц и ухудшать их свойства.
Ученые из Уральского федерального университета (УрФУ) придумали новый способ получения наночастиц маггемита, который основан на простой и дешевой реакции радиационно-химического метода. Этот метод позволяет получать нанопорошки с высокой концентрацией структурных дефектов, от которых часто зависят многие интересные и полезные свойства. В результате облучения получили нанопорошок, содержащий как аморфную фазу маггемита, так и его сверхтонкие кристаллы размером около 2-3 нанометров. Статья ученых с описанием исследований и их результатов опубликована в журнале Ceramics International. Работу поддержал Российский научный фонд.
Наночастицы маггемита, полученные уральскими физиками, прошли ряд тестов, которые подтвердили их высокие магнитные, катализаторные и биологические свойства. В частности, они показали хорошую способность к фотокатализу при разложении органических загрязнителей в воде под действием ультрафиолетового света. Также они продемонстрировали высокую эффективность в качестве контрастных агентов для МРТ, обеспечивая четкое изображение тканей и органов. Более того, они не вызывали негативных эффектов на живые клетки, что свидетельствует об их безопасности для биомедицинских приложений. Это было подтверждено тестом на гемолиз, который оценивает повреждение мембран красных кровяных телец при взаимодействии с наночастицами. Все образцы наночастиц маггемита не показали гемолитической активности при концентрации до 3 мг/мл, что говорит об их хорошей совместимости с кровью.
Таким образом, уральские физики смогли создать универсальный материал из оксида железа, который может быть использован для различных целей в области здравоохранения. Метод является простым, дешевым и экологичным, так как не требует использования дорогостоящих реактивов и растворителей. В будущем ученые планируют оптимизировать параметры синтеза наночастиц маггемита и исследовать их влияние на различные типы клеток и тканей.
Наночастицы маггемита — это крошечные кристаллы оксида железа, которые имеют спинельную структуру и состоят из двух типов ионов железа: Fe2+ и Fe3+. Эти ионы распределены по разным позициям в кристаллической решетке и образуют магнитные моменты, которые направлены в противоположные стороны. В результате образуется так называемый антиферромагнетизм, когда суммарный магнитный момент кристалла равен нулю. Однако при уменьшении размеров кристаллов до нанометровых величин происходит эффект суперпараметризма, когда магнитный момент кристалла становится зависимым от внешнего магнитного поля. Таким образом, наночастицы маггемита можно управлять с помощью магнитных полей, что дает им большие возможности для практического использования.
Наночастицы маггемита имеют ряд преимуществ перед другими формами оксида железа, особенно в биомедицине. Во-первых, они имеют меньший относительно сосудов человека размер, что позволяет им легко проникать в ткани и органы, не вызывая токсичности или иммунного ответа. Во-вторых, они обладают способностью к фотокатализу, то есть ускорению химических реакций под действием света. Это свойство может быть использовано для очистки воды от органических загрязнителей, таких как пестициды, лекарства или красители. Также это свойство может быть использовано для лечения раковых опухолей, когда наночастицы под действием света выделяют активные формы кислорода, которые разрушают раковые клетки, при этом уменьшая дозу облучения. В-третьих, наночастицы маггемита обладают высокой чувствительностью к магнитному полю, что позволяет им использоваться в качестве контрастных агентов для магнитно-резонансной томографии (МРТ) — одного из самых точных и безопасных методов диагностики заболеваний. МРТ основана на измерении сигнала, который возникает при возбуждении водородных атомов в тканях человека переменным магнитным полем. Наночастицы маггемита, введенные в организм, усиливают этот сигнал и делают изображение более контрастным и четким.
Однако получение наночастиц маггемита высокого качества не такое простое дело, как может показаться. Существующие химические методы синтеза дают возможность получить различные формы маггемита: микрозерна, пленки или наночастицы при достаточно высоких температурах, однако для всех указанных методов существует проблема, связанная с необходимостью отделения маггемита от других сопутствующих фаз оксида железа, таких как гематит или магнетит. Кроме того, эти методы требуют использования дорогостоящих реактивов и растворителей, которые могут оставаться на поверхности наночастиц и ухудшать их свойства.
Ученые из Уральского федерального университета (УрФУ) придумали новый способ получения наночастиц маггемита, который основан на простой и дешевой реакции радиационно-химического метода. Этот метод позволяет получать нанопорошки с высокой концентрацией структурных дефектов, от которых часто зависят многие интересные и полезные свойства. В результате облучения получили нанопорошок, содержащий как аморфную фазу маггемита, так и его сверхтонкие кристаллы размером около 2-3 нанометров. Статья ученых с описанием исследований и их результатов опубликована в журнале Ceramics International. Работу поддержал Российский научный фонд.
Наночастицы маггемита, полученные уральскими физиками, прошли ряд тестов, которые подтвердили их высокие магнитные, катализаторные и биологические свойства. В частности, они показали хорошую способность к фотокатализу при разложении органических загрязнителей в воде под действием ультрафиолетового света. Также они продемонстрировали высокую эффективность в качестве контрастных агентов для МРТ, обеспечивая четкое изображение тканей и органов. Более того, они не вызывали негативных эффектов на живые клетки, что свидетельствует об их безопасности для биомедицинских приложений. Это было подтверждено тестом на гемолиз, который оценивает повреждение мембран красных кровяных телец при взаимодействии с наночастицами. Все образцы наночастиц маггемита не показали гемолитической активности при концентрации до 3 мг/мл, что говорит об их хорошей совместимости с кровью.
Таким образом, уральские физики смогли создать универсальный материал из оксида железа, который может быть использован для различных целей в области здравоохранения. Метод является простым, дешевым и экологичным, так как не требует использования дорогостоящих реактивов и растворителей. В будущем ученые планируют оптимизировать параметры синтеза наночастиц маггемита и исследовать их влияние на различные типы клеток и тканей.
- Евгения Бусина
- Родион Нарудинов/ ресурс Научная Россия
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Выяснилось, что суша вокруг Аральского моря... стремительно поднимается
И ученые сумели разгадать эту удивительную загадку природы....

В каменных гробницах древней Ирландии похоронены вовсе не те, о ком думали ученые
Генетический анализ переписывает историю неолита....

Тайна последнего Папы: сбудется ли пророчество XII века?
Три Петра, один престол: что об этом говорят историки и сам Ватикан?...

Что 220 дней в космосе сделали с 70-летним мужчиной?
Старейший астронавт NASA возвратился на Землю....

Застукали: антарктического гигантского кальмара впервые запечатлели в естественной среде
Прошёл век после открытия вида....

Невероятная история единственного человека, которому удалось проникнуть в Зону 51
Джерри Фримен не только выбрался оттуда, но и рассказал, что увидел....

«Двух монстров» засняли на камеру в знаменитом шотландском озере
Ученые не верят, но кого тогда видел очевидец?...

Американские военные приступили к строительству орбитального авианосца
Пентагон говорит, что это исключительно ради мира. Но эксперты прогнозируют военную эскалацию в космосе....

Оказывается, римляне периодически врали о своих победах в исторических хрониках
Недавно археологи обнаружили в Судане очередное яркое тому подтверждение....

Бетон в туннелях для автотранспорта гниёт удивительно быстро
Казалось бы прочный материал гложут микробы....

Китай испытал новейшую водородную, но не ядерную бомбу
Кто-то говорит, что это инновация, а кто-то, что такое уже было в СССР....

Ученые заставили человеческий глаз видеть совершенно новый цвет
Он называется оло, и его практически не описать словами....

Шимпанзе устраивают пьяные вечеринки
Похоже, у человека и близких видов это в крови....

Вороны еще раз подтвердили свою гениальность
Исследование показало, что эти птицы отлично распознают… геометрические фигуры....

Ученые доказали: вода на Земле не из космоса, а своя собственная
Она зародилась «автоматически». И это в корне меняет теорию жизни во Вселенной....

Нюхали чужие футболки: женщины полагаются на запах при выборе друзей
Наука требует странных опытов....