Робота-повара научили воссоздавать блюда после просмотра кулинарных видеороликов
Исследователи обучили роботизированного «шеф-повара» смотреть кулинарные видеоролики и учиться по ним, а также воссоздавать само блюдо. Изобретатели из Кембриджского университета заложили в робота-повара «кулинарную книгу» из восьми простых салатов. После просмотра видео, на котором человек показал один из рецептов, робот смог определить, какой именно салат готовят, и повторить его «собственноручно». Научную статью о достижении озаглавили «Распознавание намерений шеф-повара-человека для постепенного изучения кулинарной книги роботизированным шеф-поваром по приготовлению салатов».
Кроме того, видеоролики помогли роботу постепенно пополнять свою кулинарную книгу. В конце эксперимента робот самостоятельно придумал девятый рецепт. Итак, видеоконтент может стать ценным и богатым источником данных для автоматизированного производства продуктов питания, чтобы упростить и удешевить внедрение робототехники на кухнях.
Роботов-поваров десятилетиями пописывали в научной фантастике, но на самом деле приготовление пищи — сложная задача для машины. Несколько коммерческих компаний уже создали робоповаров, но они значительно отстают от людей с точки зрения мастерства. Люди могут изучать новые рецепты, просто посмотрев, как работает другой, или видео про это на YouTube. Но программирование робота для приготовления различных блюд — это дорого и отнимает много времени.
— Гжегож Сохацкий из инженерного факультета Кембриджа, первый автор статьи.
Сохацкий, кандидат наук в лаборатории биоинженерной робототехники профессора Фумии Ииды, и его коллеги придумали восемь простых рецептов салатов и засняли на видео, как они их готовят. Затем использовали общедоступную нейронную сеть для обучения робота. Нейронная сеть уже была обучена узнавать различные объекты, включая фрукты и овощи: брокколи, морковь, яблоко, банан и апельсин.
Используя компьютерное зрение, робот проанализировал каждый кадр видео и смог опознать различные объекты и особенности: нож, ингредиенты, руки и лицо своего учителя. И рецепты, и видеоролики преобразовали в векторы, и робот выполнил математические операции, чтобы определить сходство между демонстрацией и вектором.

Правильно определяя ингредиенты и действия человека, робот мог понять, какой из рецептов шёл в дело. Если бы демонстратор держал нож в одной руке, а морковь — в другой, то происходила резка овоща, делала свой вывод машина.
Из 16 просмотренных видеороликов робот распознал правильный рецепт в 93% случаев, хотя понимал только 83% действий человека. Робот также смог обнаружить, что небольшие изменения в рецепте — двойная порция или обычная человеческая ошибка — это вариации одного процесса, а не новый рецепт. Робот также правильно распознал демонстрацию нового, девятого по счёту салата, а затем добавил его в свою кулинарную книгу и приготовил.
Сохацкий считает удивительным то, сколько нюансов робот смог обнаружить. Да, эти были простенькие рецепты, всего лишь нарезанные фрукты и овощи. Но эффективность машины состоит в том, что она поняла: два нарезанных яблока и две нарезанные моркови — это тот же рецепт, что и три нарезанных яблока и три нарезанные моркови.
Видеоролики, используемые для обучения робота-повара, не похожи на сюжеты о еде, сделанные блогерами в соцсетях, эффектные и резвые. Например, роботу было бы трудно распознать морковь, если бы её сжимали в руке. Чтобы робот идентифицировал морковку, человек-демонстратор должен был показать овощ целиком. Но поскольку роботы-повара всё лучше и всё быстрее определяют ингредиенты в видео о еде, они уже могут использовать YouTube для изучения целого ряда рецептов, добавил Сохацкий.
Кроме того, видеоролики помогли роботу постепенно пополнять свою кулинарную книгу. В конце эксперимента робот самостоятельно придумал девятый рецепт. Итак, видеоконтент может стать ценным и богатым источником данных для автоматизированного производства продуктов питания, чтобы упростить и удешевить внедрение робототехники на кухнях.
Роботов-поваров десятилетиями пописывали в научной фантастике, но на самом деле приготовление пищи — сложная задача для машины. Несколько коммерческих компаний уже создали робоповаров, но они значительно отстают от людей с точки зрения мастерства. Люди могут изучать новые рецепты, просто посмотрев, как работает другой, или видео про это на YouTube. Но программирование робота для приготовления различных блюд — это дорого и отнимает много времени.
Мы хотели посмотреть, сможем ли мы обучить робота-повара тому же поэтапному способу, как у людей: опознавать ингредиенты и их сочетания в блюде
— Гжегож Сохацкий из инженерного факультета Кембриджа, первый автор статьи.
Сохацкий, кандидат наук в лаборатории биоинженерной робототехники профессора Фумии Ииды, и его коллеги придумали восемь простых рецептов салатов и засняли на видео, как они их готовят. Затем использовали общедоступную нейронную сеть для обучения робота. Нейронная сеть уже была обучена узнавать различные объекты, включая фрукты и овощи: брокколи, морковь, яблоко, банан и апельсин.
Используя компьютерное зрение, робот проанализировал каждый кадр видео и смог опознать различные объекты и особенности: нож, ингредиенты, руки и лицо своего учителя. И рецепты, и видеоролики преобразовали в векторы, и робот выполнил математические операции, чтобы определить сходство между демонстрацией и вектором.

Правильно определяя ингредиенты и действия человека, робот мог понять, какой из рецептов шёл в дело. Если бы демонстратор держал нож в одной руке, а морковь — в другой, то происходила резка овоща, делала свой вывод машина.
Из 16 просмотренных видеороликов робот распознал правильный рецепт в 93% случаев, хотя понимал только 83% действий человека. Робот также смог обнаружить, что небольшие изменения в рецепте — двойная порция или обычная человеческая ошибка — это вариации одного процесса, а не новый рецепт. Робот также правильно распознал демонстрацию нового, девятого по счёту салата, а затем добавил его в свою кулинарную книгу и приготовил.
Сохацкий считает удивительным то, сколько нюансов робот смог обнаружить. Да, эти были простенькие рецепты, всего лишь нарезанные фрукты и овощи. Но эффективность машины состоит в том, что она поняла: два нарезанных яблока и две нарезанные моркови — это тот же рецепт, что и три нарезанных яблока и три нарезанные моркови.
Видеоролики, используемые для обучения робота-повара, не похожи на сюжеты о еде, сделанные блогерами в соцсетях, эффектные и резвые. Например, роботу было бы трудно распознать морковь, если бы её сжимали в руке. Чтобы робот идентифицировал морковку, человек-демонстратор должен был показать овощ целиком. Но поскольку роботы-повара всё лучше и всё быстрее определяют ингредиенты в видео о еде, они уже могут использовать YouTube для изучения целого ряда рецептов, добавил Сохацкий.
- Дмитрий Ладыгин
- eurekalert.org; ieeexplore.ieee.org
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Почему Китай так стремительно обгоняет США: Эксперт вскрыл секрет, который не замечал никто
Аналитик Дэн Ван уверен: если Запад не начнет срочно меняться, то он обречен перед Востоком...
Великий обман древности: итальянские ученые доказали, что историк соврал о гибели Помпей
Случайная надпись на стене перечеркнула официальную дату смерти города...
Роковая ошибка древних врачей: Почему современные ученые считают, что Александра Македонского похоронили заживо?
Он слышал плач своих полководцев и видел приготовления к бальзамированию, но не мог пошевелиться. Тело великого царя стало его собственным гробом...
Он все слышал, но не мог пошевелиться: Жуткая правда о том, почему тело Александра Македонского не разлагалось
Великий царь стал заложником собственной плоти. Диагноз, который поставили спустя 2300 лет, объясняет все: и «чудо» нетленности, и страшную смерть....
Новое исследование показало: Стоунхендж столетиями «водил за нос». Похоже, историю опять придется переписывать
Оказалось, что сенсация скрывалась в огромном круге, состоящем из загадочных шахт...
Почему Китай так стремительно обгоняет США: секрет, который не замечал никто. Часть 2
Уханьское метро, темная сторона инженерного государства и есть ли шансы у Штатов...
ЦРУ, море в пустыне и нефть: кто и зачем остановил проект Египта на 60 лет?
Часть вторая: Холодная война, 200 ядерных взрывов и 15 миллиардов, которые могут все изменить...
Египет хотел создать МОРЕ в пустыне Сахара: почему проект заморозили на 60 лет?
Часть первая: Реальный шанс спастись от всемирного потопа...
Российский ученый уверен, что максимально приблизился к разгадке тайны шаровой молнии
Похоже, наука ошибалась: это не плазменный сгусток, а «живой кристалл» из частиц-призраков...
Людовик XIV умер совсем не от гангрены: ученые сумели раскрыть истину лишь 310 лет спустя
Эксперты говорят: французский король был обречен. Медикам того времени была совершенно неизвестна его болезнь...
Алкогольная цивилизация: древние люди освоили земледелие... ради пива
Ученые давно подозревали это, а новые находки только подлили масла в огонь «пивной» версии...
Новый российский материал спасает от пожаров и взрывов аккумуляторов
Почему эксперты называют разработку сахалинских ученых настоящим прорывом в сохранении энергии?...