Нейросеть из Петербурга улучшает качество связи: как она работает и зачем нужна
Специалисты Санкт-Петербургского государственного электротехнического университета (СПбГЭТУ) разработали нейросетевую модель, которая автоматически подбирает наиболее оптимальные сигналы для передачи данных по телекоммуникационным сетям. Такая модель помогает предотвращать искажения и ошибки в обмене информацией между пользователями.
С каждым годом количество пользователей систем связи и объемы передаваемых ими данных растут. Чтобы избежать сбоев в информационных системах, нужно масштабировать телекоммуникационную инфраструктуру. Однако это приводит к тому, что в сети одновременно передается большое количество сигналов, которые могут мешать друг другу и вызывать искажения и ошибки в процессе обмена данными.
Как решить эту проблему? Один из способов — подобрать такие сигналы, которые в случае их искажения при передаче через канал связи можно надежнее всего отличить друг от друга. Это называется задачей оптимизации.
— заместитель заведующего кафедрой теоретических основ радиотехники СПбГЭТУ Александр Сергиенко.
С помощью такой модели можно создавать наборы сигналов для действующих систем связи, повышая эффективность их работы по соотношению скорости и надежности передачи информации.
Нейросетевая модель, созданная специалистами СПбГЭТУ, относится к типу генеративных нейросетей. Это такие нейросети, которые могут создавать новые данные на основе имеющихся. Генеративная нейросеть для подбора оптимальных сигналов работает следующим образом: она получает на вход информацию о характеристиках канала связи, по которому нужно передать данные. Затем она генерирует набор сигналов с разными параметрами и проверяет их качество по критериям эффективности передачи информации. Наконец, она выбирает лучший набор сигналов и выдает его на выход.
Таким образом, нейросеть позволяет автоматизировать процесс подбора оптимальных сигналов для передачи информации по телекоммуникационным сетям и улучшить качество связи.
С каждым годом количество пользователей систем связи и объемы передаваемых ими данных растут. Чтобы избежать сбоев в информационных системах, нужно масштабировать телекоммуникационную инфраструктуру. Однако это приводит к тому, что в сети одновременно передается большое количество сигналов, которые могут мешать друг другу и вызывать искажения и ошибки в процессе обмена данными.
Как решить эту проблему? Один из способов — подобрать такие сигналы, которые в случае их искажения при передаче через канал связи можно надежнее всего отличить друг от друга. Это называется задачей оптимизации.
Мы создали виртуальную систему связи, в которой моделируются процессы, происходящие с сигналами при передаче информации. Наша нейросетевая модель решает задачу оптимизации, то есть подбирает набор радиосигналов с наиболее эффективными параметрами для конкретной телекоммуникационной системы, исходя из особенностей канала связи, который в ней применяется
— заместитель заведующего кафедрой теоретических основ радиотехники СПбГЭТУ Александр Сергиенко.
С помощью такой модели можно создавать наборы сигналов для действующих систем связи, повышая эффективность их работы по соотношению скорости и надежности передачи информации.
Нейросетевая модель, созданная специалистами СПбГЭТУ, относится к типу генеративных нейросетей. Это такие нейросети, которые могут создавать новые данные на основе имеющихся. Генеративная нейросеть для подбора оптимальных сигналов работает следующим образом: она получает на вход информацию о характеристиках канала связи, по которому нужно передать данные. Затем она генерирует набор сигналов с разными параметрами и проверяет их качество по критериям эффективности передачи информации. Наконец, она выбирает лучший набор сигналов и выдает его на выход.
Таким образом, нейросеть позволяет автоматизировать процесс подбора оптимальных сигналов для передачи информации по телекоммуникационным сетям и улучшить качество связи.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Как на ладони: Обнаружен морской гигант, который виден из космоса
Мегакоралл у Соломоновых островов оказался самым крупным животным Земли....
Спасти планету сможет… африканский червь
В Кении найдено насекомое с удивительными способностями....
«Орешник», «Бук» и «Тополь»: искусный нейминг от российских военных конструкторов
Наука как сбить Запад с толку....
Главная тайна Седьмой планеты разгадана через 38 лет
Уран оказался не таким уж странным, как думали ученые....
80 000 лет жизни: какие тайны скрывает самое древнее и большое существо на планете?
Залог невероятного долголетия и удивительного выживания обнаружили учёные....
Раскрыт секрет идеального женского тела?
Оказывается, дело вовсе не в соотношении талии и бедер....
Саблезубый котёнок томился во льдах Якутии 35 тысяч лет
Благодаря находке стало известно, что сородичи пушистика обитали в столь холодных местах....
Ученые раскрыли тайну сигнала, после которого началось самое мощное извержение в истории
Разгадка оказалась потрясающей во всех смыслах....
Ученая вылечила свой рак вирусами собственного производства
Если человек хочет жить — медицина бессильна....
Эти «красные монстры» вообще не должны существовать
Что узнали астрономы о трех невозможно огромных галактиках....
Почти бессмертные существа помогут человечеству покорить глубокий космос
Ученым, наконец, удалось «взломать» код поразительной живучести тихоходок....
Разгадано учеными: почему города разрушают сердце и разум
Причины, которые нашли исследователи, вас удивят....
Ещё один одинокий: в Балтийском море обнаружен дельфин, который может говорить только сам с собой
Совсем как старый вдовец, которого давно не навещали близкие....
Турбулентность отменяется! А пилоты-люди вообще будут не нужны
Искусственный интеллект может в корне изменить авиацию....
Надеялись на Беса: древние египтянки при беременности хлебали галлюциногенные смеси
Думали, что божок с двусмысленным для нас именем убережёт....
Большой мозг — не значит самый умный
Последнее исследование собак показало парадоксальные результаты....