Нейросеть из Петербурга улучшает качество связи: как она работает и зачем нужна
Специалисты Санкт-Петербургского государственного электротехнического университета (СПбГЭТУ) разработали нейросетевую модель, которая автоматически подбирает наиболее оптимальные сигналы для передачи данных по телекоммуникационным сетям. Такая модель помогает предотвращать искажения и ошибки в обмене информацией между пользователями.
С каждым годом количество пользователей систем связи и объемы передаваемых ими данных растут. Чтобы избежать сбоев в информационных системах, нужно масштабировать телекоммуникационную инфраструктуру. Однако это приводит к тому, что в сети одновременно передается большое количество сигналов, которые могут мешать друг другу и вызывать искажения и ошибки в процессе обмена данными.
Как решить эту проблему? Один из способов — подобрать такие сигналы, которые в случае их искажения при передаче через канал связи можно надежнее всего отличить друг от друга. Это называется задачей оптимизации.
— заместитель заведующего кафедрой теоретических основ радиотехники СПбГЭТУ Александр Сергиенко.
С помощью такой модели можно создавать наборы сигналов для действующих систем связи, повышая эффективность их работы по соотношению скорости и надежности передачи информации.
Нейросетевая модель, созданная специалистами СПбГЭТУ, относится к типу генеративных нейросетей. Это такие нейросети, которые могут создавать новые данные на основе имеющихся. Генеративная нейросеть для подбора оптимальных сигналов работает следующим образом: она получает на вход информацию о характеристиках канала связи, по которому нужно передать данные. Затем она генерирует набор сигналов с разными параметрами и проверяет их качество по критериям эффективности передачи информации. Наконец, она выбирает лучший набор сигналов и выдает его на выход.
Таким образом, нейросеть позволяет автоматизировать процесс подбора оптимальных сигналов для передачи информации по телекоммуникационным сетям и улучшить качество связи.
С каждым годом количество пользователей систем связи и объемы передаваемых ими данных растут. Чтобы избежать сбоев в информационных системах, нужно масштабировать телекоммуникационную инфраструктуру. Однако это приводит к тому, что в сети одновременно передается большое количество сигналов, которые могут мешать друг другу и вызывать искажения и ошибки в процессе обмена данными.
Как решить эту проблему? Один из способов — подобрать такие сигналы, которые в случае их искажения при передаче через канал связи можно надежнее всего отличить друг от друга. Это называется задачей оптимизации.
Мы создали виртуальную систему связи, в которой моделируются процессы, происходящие с сигналами при передаче информации. Наша нейросетевая модель решает задачу оптимизации, то есть подбирает набор радиосигналов с наиболее эффективными параметрами для конкретной телекоммуникационной системы, исходя из особенностей канала связи, который в ней применяется
— заместитель заведующего кафедрой теоретических основ радиотехники СПбГЭТУ Александр Сергиенко.
С помощью такой модели можно создавать наборы сигналов для действующих систем связи, повышая эффективность их работы по соотношению скорости и надежности передачи информации.
Нейросетевая модель, созданная специалистами СПбГЭТУ, относится к типу генеративных нейросетей. Это такие нейросети, которые могут создавать новые данные на основе имеющихся. Генеративная нейросеть для подбора оптимальных сигналов работает следующим образом: она получает на вход информацию о характеристиках канала связи, по которому нужно передать данные. Затем она генерирует набор сигналов с разными параметрами и проверяет их качество по критериям эффективности передачи информации. Наконец, она выбирает лучший набор сигналов и выдает его на выход.
Таким образом, нейросеть позволяет автоматизировать процесс подбора оптимальных сигналов для передачи информации по телекоммуникационным сетям и улучшить качество связи.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Он был размером как четыре Эвереста
Ученые считают: жизнь на Земле породил гигантский метеорит....
Швейцарские ученые собираются распылить в атмосфере миллионы тонн алмазов
Остановит ли это глобальное потепление?...
Секретные китайские спутники «Тысячи парусов» — новый кошмар для астрономов
Наблюдать за звездами с Земли становится всё проблематичнее....
Раскрыта правда о «зелёной» Англии
На самом деле, Великобритании угрожает лососевое вымирание....
Почему викинги не сумели колонизировать Северную Америку?
1000-летняя тайна, похоже, все-таки разгадана....
Аномальное древнее кладбище найдено на юге Испании
В 5500-летнем некрополе оказалось много женщин и мало мужчин....
Лазеры раскрыли тайны затерянных городов на Великом шелковом пути
Стало известно, как города-близнецы процветали в суровом высокогорье....
Электрические обои согреют комнату за три минуты
Альтернатива центральному отоплению или очередной фейк?...
Специалисты NASA заявляют, что жизнь на Марсе может... скрываться
И они знают, где ее искать....
И снова наглый плагиат от компании Tesla?
Маск опять в суде. Теперь из-за «Бегущего по лезвию 2049»....
Ученые наконец-то подтвердили, что солнечный максимум уже наступил
Метеозависимым людям придётся несладко....
Доказано на макаках: одиночество в старости сокращает шансы заболеть
Меньше других рядом — меньше угроз....
Добыча криптовалюты: кто-то на этом зарабатывает, а кто-то теряет здоровье
Американские ученые вскрыли неожиданную проблему....
Марк Цукерберг представил «самые передовые очки за всю историю»
Разбираемся: стоит ли девайс свои 10 000 $....
Почти что полёт: найдены следы динозавра, который ускорял свой бег крыльями
Окаменевшие отпечатки позволили рассчитать особенности передвижения....
С помощью лидаров археологи нашли ещё более 6600 сооружений майя
Ещё предстоит обнаружить все крупные города древней цивилизации....