ИИ научили распознавать, из чего сделаны тысячи предметов
Роботу, который, скажем, орудует на кухне, будет полезно понимать, какие предметы состоят из одних и тех же материалов. При верном выборе робот не ошибётся, если возьмёт небольшой кусочек масла из тёмного уголка или целую пачку из ярко освещённого холодильника.
Идентификация объектов с одинаковым составом, то есть выбор материала, — особенно сложная задача для машин, поскольку внешний вид предметов может сильно отличаться в зависимости от их формы или освещения. Учёные из Массачусетского технологического института (MIT) и компании Adobe Research сделали большой шаг к решению этой проблемы. Они разработали метод, который может идентифицировать все пиксели на изображении того или иного материала по маленькому участку, выбранному пользователем.
Модель обучали только на данных компьютера, который преобразовал объёмные интерьеры для получения различных изображений. В итоге система эффективно работает с реальностью внутри и снаружи помещений, которую она прежде не видела. Подход также годится для видеороликов: как только пользователь идентифицирует точку в первом кадре, модель может идентифицировать объекты из того же материала на протяжении остального видео. Кроме распознавания окружающей обстановки роботами, метод подойдёт также для редактирования изображений или в вычислительных системах, которым важны параметры материалов. Систему также можно использовать для рекомендаций клиентам: возможно, покупатель ищет одежду из определённого типа ткани.
Но как быть, если речь идёт, к примеру, о мебели из разных материалов? В таком случае машинное обучение оценивает все пиксели изображения, сверяя материал между выбранным пользователем участком и всеми другими областями изображения. Если на картинке стол и два стула, и ножки стула и столешница из одной и той же древесины, модель способна точно идентифицировать похожие участки.
Прежде чем исследователи смогли разработать метод ИИ, позволяющий научиться выбирать похожие материалы, пришлось преодолеть несколько препятствий. Так, не хватало точного набора образцов. Тогда разработчики отрисовали свой собственный набор данных об интерьерах, который включал 50 тысяч изображений и более 16 тыс. материалов, соотнесённых с каждым объектом.
— Прафул Шарма, аспирант кафедры электротехники и компьютерных наук и ведущий автор научной статьи.
Имея набор данных, учёные стали учить модель сличать похожие материалы на реальных примерах, но… безуспешно. Исследователи поняли, что виноват сдвиг распределения, то есть разница между виртуальным и реальностью из-за отличий от обучающего набора. Чтобы решить эту проблему, они настроили модель на предварительно подготовленной, которая видела миллионы реальных изображений.
Итоговая модель преобразует общие визуальные характеристики в специфичные для материала, и делает это вне зависимости от форм объектов или различным условиям освещения. Затем система может вычислить показатель сходства материалов для каждого фрагмента изображения. Когда пользователь выбирает точку, модель определяет, насколько близок к запросу каждый другой участок. Система создаёт карту, где каждый пиксель ранжирован по шкале от 0 до 1 для определения сходства.
Поскольку модель выдаёт оценку сходства для каждого пикселя, пользователь может точно настроить результаты, установив пороговое значение, например, о сходстве на 90%, и получить карту изображения с выделенными областями. Метод также работает для перекрёстного выбора изображений: можно выбрать пиксель на одном изображении и найти тот же материал на другом.
В ходе экспериментов выяснилось, что полученная модель может предсказывать области изображения, содержащие тот же материал, более точно, чем другие методы. Когда разработчики измерили, насколько хорошо предсказание соответствует действительности, то есть фактическим областям изображения из одного и того же материала, их модель сработала с точностью около 92%.
Уже есть планы усовершенствовать новинку, чтобы она могла лучше распознавать мелкие детали объектов. Участница научной работы Кавита Бала, декан колледжа вычислительной техники и информатики и профессор компьютерных наук, пояснила, что технология может очень пригодиться тем же дизайнерам. Например, владелец дома может представить, как могут выглядеть дорогостоящие варианты обивки дивана или коврового покрытия перед их покупкой.
Идентификация объектов с одинаковым составом, то есть выбор материала, — особенно сложная задача для машин, поскольку внешний вид предметов может сильно отличаться в зависимости от их формы или освещения. Учёные из Массачусетского технологического института (MIT) и компании Adobe Research сделали большой шаг к решению этой проблемы. Они разработали метод, который может идентифицировать все пиксели на изображении того или иного материала по маленькому участку, выбранному пользователем.
Модель обучали только на данных компьютера, который преобразовал объёмные интерьеры для получения различных изображений. В итоге система эффективно работает с реальностью внутри и снаружи помещений, которую она прежде не видела. Подход также годится для видеороликов: как только пользователь идентифицирует точку в первом кадре, модель может идентифицировать объекты из того же материала на протяжении остального видео. Кроме распознавания окружающей обстановки роботами, метод подойдёт также для редактирования изображений или в вычислительных системах, которым важны параметры материалов. Систему также можно использовать для рекомендаций клиентам: возможно, покупатель ищет одежду из определённого типа ткани.
Но как быть, если речь идёт, к примеру, о мебели из разных материалов? В таком случае машинное обучение оценивает все пиксели изображения, сверяя материал между выбранным пользователем участком и всеми другими областями изображения. Если на картинке стол и два стула, и ножки стула и столешница из одной и той же древесины, модель способна точно идентифицировать похожие участки.
Прежде чем исследователи смогли разработать метод ИИ, позволяющий научиться выбирать похожие материалы, пришлось преодолеть несколько препятствий. Так, не хватало точного набора образцов. Тогда разработчики отрисовали свой собственный набор данных об интерьерах, который включал 50 тысяч изображений и более 16 тыс. материалов, соотнесённых с каждым объектом.
Нам нужен был набор данных, в котором каждый тип материала был бы отмечен в отдельности
— Прафул Шарма, аспирант кафедры электротехники и компьютерных наук и ведущий автор научной статьи.
Имея набор данных, учёные стали учить модель сличать похожие материалы на реальных примерах, но… безуспешно. Исследователи поняли, что виноват сдвиг распределения, то есть разница между виртуальным и реальностью из-за отличий от обучающего набора. Чтобы решить эту проблему, они настроили модель на предварительно подготовленной, которая видела миллионы реальных изображений.
Итоговая модель преобразует общие визуальные характеристики в специфичные для материала, и делает это вне зависимости от форм объектов или различным условиям освещения. Затем система может вычислить показатель сходства материалов для каждого фрагмента изображения. Когда пользователь выбирает точку, модель определяет, насколько близок к запросу каждый другой участок. Система создаёт карту, где каждый пиксель ранжирован по шкале от 0 до 1 для определения сходства.
Поскольку модель выдаёт оценку сходства для каждого пикселя, пользователь может точно настроить результаты, установив пороговое значение, например, о сходстве на 90%, и получить карту изображения с выделенными областями. Метод также работает для перекрёстного выбора изображений: можно выбрать пиксель на одном изображении и найти тот же материал на другом.
В ходе экспериментов выяснилось, что полученная модель может предсказывать области изображения, содержащие тот же материал, более точно, чем другие методы. Когда разработчики измерили, насколько хорошо предсказание соответствует действительности, то есть фактическим областям изображения из одного и того же материала, их модель сработала с точностью около 92%.
Уже есть планы усовершенствовать новинку, чтобы она могла лучше распознавать мелкие детали объектов. Участница научной работы Кавита Бала, декан колледжа вычислительной техники и информатики и профессор компьютерных наук, пояснила, что технология может очень пригодиться тем же дизайнерам. Например, владелец дома может представить, как могут выглядеть дорогостоящие варианты обивки дивана или коврового покрытия перед их покупкой.
- Дмитрий Ладыгин
- prafullsharma.net
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Как на ладони: Обнаружен морской гигант, который виден из космоса
Мегакоралл у Соломоновых островов оказался самым крупным животным Земли....
Спасти планету сможет… африканский червь
В Кении найдено насекомое с удивительными способностями....
«Орешник», «Бук» и «Тополь»: искусный нейминг от российских военных конструкторов
Наука как сбить Запад с толку....
Главная тайна Седьмой планеты разгадана через 38 лет
Уран оказался не таким уж странным, как думали ученые....
80 000 лет жизни: какие тайны скрывает самое древнее и большое существо на планете?
Залог невероятного долголетия и удивительного выживания обнаружили учёные....
Раскрыт секрет идеального женского тела?
Оказывается, дело вовсе не в соотношении талии и бедер....
Саблезубый котёнок томился во льдах Якутии 35 тысяч лет
Благодаря находке стало известно, что сородичи пушистика обитали в столь холодных местах....
Ученые раскрыли тайну сигнала, после которого началось самое мощное извержение в истории
Разгадка оказалась потрясающей во всех смыслах....
Ученая вылечила свой рак вирусами собственного производства
Если человек хочет жить — медицина бессильна....
Эти «красные монстры» вообще не должны существовать
Что узнали астрономы о трех невозможно огромных галактиках....
Почти бессмертные существа помогут человечеству покорить глубокий космос
Ученым, наконец, удалось «взломать» код поразительной живучести тихоходок....
Разгадано учеными: почему города разрушают сердце и разум
Причины, которые нашли исследователи, вас удивят....
Ещё один одинокий: в Балтийском море обнаружен дельфин, который может говорить только сам с собой
Совсем как старый вдовец, которого давно не навещали близкие....
Турбулентность отменяется! А пилоты-люди вообще будут не нужны
Искусственный интеллект может в корне изменить авиацию....
Надеялись на Беса: древние египтянки при беременности хлебали галлюциногенные смеси
Думали, что божок с двусмысленным для нас именем убережёт....
Большой мозг — не значит самый умный
Последнее исследование собак показало парадоксальные результаты....