Российские физики придумали новый способ поиска темной материи
Темная материя — это одна из самых загадочных и удивительных вещей во Вселенной. Она не излучает и не поглощает свет, поэтому мы не можем ее увидеть. Она не взаимодействует с обычной материей никак, кроме как через гравитацию. Поэтому мы можем ее заметить только по ее влиянию на другие объекты. Например, темная материя может искривлять свет от далеких звезд и галактик или увеличивать скорость вращения галактик. Ученые считают, что темная материя составляет около 80% всей материи во Вселенной и около 25% ее массы-энергии. Однако ее природа до сих пор остается неизвестной.
Чтобы попытаться раскрыть тайну темной материи, физики создают специальные детекторы, которые могут регистрировать редкие взаимодействия между частицами темной материи и обычной материей. Один из таких детекторов разработали специалисты Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН). Это двухфазный криогенный детектор на основе аргона. Это устройство, которое состоит из двух камер: одна заполнена жидким аргоном, а другая — газообразным. Жидкий аргон служит средой для взаимодействия с частицами темной материи, а газообразный — для регистрации светового сигнала, возникающего при этом взаимодействии.
Двухфазный криогенный детектор имеет ряд преимуществ перед другими типами детекторов. Он обладает высокой чувствительностью и разрешением, так как световой сигнал усиливается в газовой фазе за счет электролюминесценции. Это явление, при котором электроны из жидкости сталкиваются с атомами аргона в высоком электрическом поле и заставляют их светиться. Детектор также позволяет различать электронные и ядерные отдачи, то есть отсеивать фоновые события от интересующих нас событий. Кроме того, детектор легко масштабируется, то есть можно увеличивать объем рабочего вещества для повышения статистики измерений.
Однако двухфазный криогенный детектор на основе аргона имеет и свои сложности. Одна из них — необходимость использовать специальные материалы для смещения спектра излучения из ультрафиолетового диапазона в видимый. Эти материалы могут со временем терять свои свойства или отслаиваться от поверхности детектора. Поэтому российские физики предложили альтернативный способ считывания сигнала в видимом диапазоне без применения сместителей спектра. Они изучили два механизма излучения в видимом диапазоне: нейтральное тормозное излучение и лавинную сцинтилляцию.
Нейтральное тормозное излучение возникает при рассеянии электронов на нейтральных атомах аргона в газовой фазе. Это излучение имеет широкий спектр и может быть зарегистрировано в видимом диапазоне при помощи кремниевых фотоумножителей. Лавинная сцинтилляция происходит при образовании электронной лавины в сильном электрическом поле. Это излучение имеет узкий спектр и может быть зарегистрировано в ближнем инфракрасном диапазоне при помощи индиум-галлиевых-арсенидных фотодиодов.
Российские ученые продемонстрировали возможность использования этих механизмов для оптического считывания двухфазных детекторов на аргоне. Они измерили амплитудную выходность и разрешение по положению для этих техник считывания, что позволило оценить порог обнаружения частиц темной материи. Оказалось, что при использовании нейтрального тормозного излучения можно регистрировать частицы темной материи с массой выше 10 ГэВ/с2, а при использовании лавинной сцинтилляции — выше 100 ГэВ/с2.
– научный сотрудник ИЯФ СО РАН Владислав Олейников.
Таким образом, российские физики предложили новый подход к поиску темной материи, который может быть применен к большим детекторам на основе аргона. Это открывает новые перспективы для решения одной из самых главных загадок современной науки.
Чтобы попытаться раскрыть тайну темной материи, физики создают специальные детекторы, которые могут регистрировать редкие взаимодействия между частицами темной материи и обычной материей. Один из таких детекторов разработали специалисты Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН). Это двухфазный криогенный детектор на основе аргона. Это устройство, которое состоит из двух камер: одна заполнена жидким аргоном, а другая — газообразным. Жидкий аргон служит средой для взаимодействия с частицами темной материи, а газообразный — для регистрации светового сигнала, возникающего при этом взаимодействии.
Двухфазный криогенный детектор имеет ряд преимуществ перед другими типами детекторов. Он обладает высокой чувствительностью и разрешением, так как световой сигнал усиливается в газовой фазе за счет электролюминесценции. Это явление, при котором электроны из жидкости сталкиваются с атомами аргона в высоком электрическом поле и заставляют их светиться. Детектор также позволяет различать электронные и ядерные отдачи, то есть отсеивать фоновые события от интересующих нас событий. Кроме того, детектор легко масштабируется, то есть можно увеличивать объем рабочего вещества для повышения статистики измерений.
Однако двухфазный криогенный детектор на основе аргона имеет и свои сложности. Одна из них — необходимость использовать специальные материалы для смещения спектра излучения из ультрафиолетового диапазона в видимый. Эти материалы могут со временем терять свои свойства или отслаиваться от поверхности детектора. Поэтому российские физики предложили альтернативный способ считывания сигнала в видимом диапазоне без применения сместителей спектра. Они изучили два механизма излучения в видимом диапазоне: нейтральное тормозное излучение и лавинную сцинтилляцию.
Нейтральное тормозное излучение возникает при рассеянии электронов на нейтральных атомах аргона в газовой фазе. Это излучение имеет широкий спектр и может быть зарегистрировано в видимом диапазоне при помощи кремниевых фотоумножителей. Лавинная сцинтилляция происходит при образовании электронной лавины в сильном электрическом поле. Это излучение имеет узкий спектр и может быть зарегистрировано в ближнем инфракрасном диапазоне при помощи индиум-галлиевых-арсенидных фотодиодов.
Российские ученые продемонстрировали возможность использования этих механизмов для оптического считывания двухфазных детекторов на аргоне. Они измерили амплитудную выходность и разрешение по положению для этих техник считывания, что позволило оценить порог обнаружения частиц темной материи. Оказалось, что при использовании нейтрального тормозного излучения можно регистрировать частицы темной материи с массой выше 10 ГэВ/с2, а при использовании лавинной сцинтилляции — выше 100 ГэВ/с2.
До нашей работы информация о механизмах излучения в видимом диапазоне была неполной и разрозненной. Как и ожидалось, интенсивность излучения в видимом диапазоне оказалась ниже, чем в ультрафиолетовом. Тем не менее, используя электролюминесцентный сигнал, возможно регистрировать WIMP с массой выше 10 ГэВ/с2. То есть, если частица тяжелая, она передаст ядру аргона достаточно энергии, чтобы мы смогли наблюдать сигнал от нее
– научный сотрудник ИЯФ СО РАН Владислав Олейников.
Таким образом, российские физики предложили новый подход к поиску темной материи, который может быть применен к большим детекторам на основе аргона. Это открывает новые перспективы для решения одной из самых главных загадок современной науки.
- Евгения Бусина
- наука.рф
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Почему Китай так стремительно обгоняет США: Эксперт вскрыл секрет, который не замечал никто
Аналитик Дэн Ван уверен: если Запад не начнет срочно меняться, то он обречен перед Востоком...
Урок для всей планеты: почему ГМО-кукуруза в США породила супервредителей?
Монстры-насекомые теперь летают на сотни километров и уничтожают все подряд...
Великий обман древности: итальянские ученые доказали, что историк соврал о гибели Помпей
Случайная надпись на стене перечеркнула официальную дату смерти города...
Роковая ошибка древних врачей: Почему современные ученые считают, что Александра Македонского похоронили заживо?
Он слышал плач своих полководцев и видел приготовления к бальзамированию, но не мог пошевелиться. Тело великого царя стало его собственным гробом...
Он все слышал, но не мог пошевелиться: Жуткая правда о том, почему тело Александра Македонского не разлагалось
Великий царь стал заложником собственной плоти. Диагноз, который поставили спустя 2300 лет, объясняет все: и «чудо» нетленности, и страшную смерть....
Невероятная находка в Дании: как золотые копья возрастом 2800 лет могут переписать историю Европы?
Ученые рассказали, зачем древние люди закопали драгоценное оружие у священного источника. Ответ потрясает...
Почему Китай так стремительно обгоняет США: секрет, который не замечал никто. Часть 2
Уханьское метро, темная сторона инженерного государства и есть ли шансы у Штатов...
Карликовые люди-хоббиты не вымерли 50 000 лет назад. Они до сих пор прячутся в горах Индонезии
Профессор Форт собрал десятки свидетельств очевидцев, но большинство ученых против. Кто же прав — кабинетные скептики или полевой исследователь?...
Египет хотел создать МОРЕ в пустыне Сахара: почему проект заморозили на 60 лет?
Часть первая: Реальный шанс спастись от всемирного потопа...
Алкогольная цивилизация: древние люди освоили земледелие... ради пива
Ученые давно подозревали это, а новые находки только подлили масла в огонь «пивной» версии...
Новый российский материал спасает от пожаров и взрывов аккумуляторов
Почему эксперты называют разработку сахалинских ученых настоящим прорывом в сохранении энергии?...
Российский ученый уверен, что максимально приблизился к разгадке тайны шаровой молнии
Похоже, наука ошибалась: это не плазменный сгусток, а «живой кристалл» из частиц-призраков...