
В ИТМО разработали новый способ создания оптических модулей для устройств дополненной реальности
Ученые использовали объемную голографию — метод записи трехмерного изображения в объемном материале. Новый подход позволяет сделать модули легкими, прочными, безбликовыми и полноцветными. Такие модули могут быть применены в очках дополненной реальности для разных целей, а также в качестве приборной панели на лобовом стекле автомобилей или самолетов.
Дополненная реальность — это технология, которая позволяет наложить виртуальное изображение на реальное окружение. Например, с помощью специальных очков можно увидеть на столе трехмерную модель здания или посмотреть на экране смартфона, как будет выглядеть новая мебель в комнате. Дополненная реальность может быть полезна в разных сферах: образовании, медицине, развлечениях, рекламе и т. д.

Для создания дополненной реальности нужны два основных компонента: проектор и оптический модуль. Проектор генерирует виртуальное изображение и направляет его на оптический модуль. Оптический модуль — это устройство, которое объединяет свет от проектора и свет от окружающего мира и выводит их на глаз пользователя.
Оптический модуль состоит из специальной пластины с дифракционными решетками. Дифракционные решетки — это периодические структуры, которые изменяют направление световых лучей в зависимости от их длины волны. Дифракционные решетки выполняют две функции: они перенаправляют свет от проектора к глазу пользователя (ввод) и пропускают свет от окружающего мира к глазу пользователя (вывод).
Существующие оптические модули обычно создаются на основе волноводов с дифракционными решетками на поверхности. Это означает, что свет от проектора распространяется по тонкой пластине и выходит через специальные структуры на ее краях. Такие модули имеют несколько недостатков: они тяжелые, сложные в изготовлении и создают блики.
Ученые ИТМО предложили альтернативный способ: использовать объемную голографию для записи дифракционных решеток внутри стекла. Объемная голография — это метод записи трехмерного изображения в объемном материале с помощью двух лазерных лучей.
Благодаря этому новый оптический модуль имеет ряд преимуществ перед волноводными аналогами:
Для создания оптического модуля ученые ИТМО использовали стеклянную пластину с добавлением оксидов серебра и церия. Эти элементы делают стекло чувствительным к лазерному излучению. С помощью двух лазерных лучей ученые записали дифракционную решетку в объеме стекла. Затем они активировали решетку тепловой обработкой при 500°C.
Для проверки работы оптического модуля ученые подключили его к проектору и наблюдали за тем, как он выводит изображение на экран. Они также измеряли эффективность перенаправления света при разных углах падения и длинах волн.
Результаты эксперимента показали, что оптический модуль работает стабильно при температуре до 200°C и не теряет своих свойств при механическом изгибе или химическом воздействии. Кроме того, он обладает высокой эффективностью перенаправления света (более 80%) для всех видимых длин волн.
Новый оптический модуль может быть использован в разных устройствах дополненной реальности. Например, он может быть интегрирован в очки дополненной реальности для разных целей: обучения, контроля, навигации и т. д. Такие очки могут быть более удобными, надежными и безопасными для работы в разных средах: на складах, на производстве, на стройке и т. д.
Также новый оптический модуль может быть использован в качестве приборной панели на лобовом стекле автомобилей или самолетов. На такую панель можно выводить разную информацию: скорость, направление, карту местности и т. д. Это может улучшить видимость и безопасность вождения или полета.
Ученые ИТМО планируют продолжить развитие нового подхода к созданию оптических модулей для дополненной реальности. Они хотят увеличить поле зрения модуля, чтобы передавать большее изображение, а также сделать его более адаптивным к разным проекторам.
— ведущий исполнитель проекта, инженер научно-исследовательского центра световодной фотоники Сергей Иванов.
Проект реализован в научно-исследовательском центре оптического материаловедения ИТМО под руководством профессора, директора научно-исследовательского центра оптического материаловедения Николая Никонорова.
Что такое дополненная реальность
Дополненная реальность — это технология, которая позволяет наложить виртуальное изображение на реальное окружение. Например, с помощью специальных очков можно увидеть на столе трехмерную модель здания или посмотреть на экране смартфона, как будет выглядеть новая мебель в комнате. Дополненная реальность может быть полезна в разных сферах: образовании, медицине, развлечениях, рекламе и т. д.

Для создания дополненной реальности нужны два основных компонента: проектор и оптический модуль. Проектор генерирует виртуальное изображение и направляет его на оптический модуль. Оптический модуль — это устройство, которое объединяет свет от проектора и свет от окружающего мира и выводит их на глаз пользователя.
Как работает оптический модуль
Оптический модуль состоит из специальной пластины с дифракционными решетками. Дифракционные решетки — это периодические структуры, которые изменяют направление световых лучей в зависимости от их длины волны. Дифракционные решетки выполняют две функции: они перенаправляют свет от проектора к глазу пользователя (ввод) и пропускают свет от окружающего мира к глазу пользователя (вывод).
Существующие оптические модули обычно создаются на основе волноводов с дифракционными решетками на поверхности. Это означает, что свет от проектора распространяется по тонкой пластине и выходит через специальные структуры на ее краях. Такие модули имеют несколько недостатков: они тяжелые, сложные в изготовлении и создают блики.
Что нового в подходе ИТМО
Ученые ИТМО предложили альтернативный способ: использовать объемную голографию для записи дифракционных решеток внутри стекла. Объемная голография — это метод записи трехмерного изображения в объемном материале с помощью двух лазерных лучей.
Благодаря этому новый оптический модуль имеет ряд преимуществ перед волноводными аналогами:
- состоит из одной пластины толщиной 1 мм, поэтому он легкий и компактный.
- выдерживает температуры до 200°C и устойчив к механическим и химическим воздействиям.
- не создает бликов и обеспечивает высокое качество изображения.
- может работать с разными длинами волн света без потери эффективности.
- может передавать полноцветное изображение (RGB) с помощью одной пластины.
Как проводился эксперимент
Для создания оптического модуля ученые ИТМО использовали стеклянную пластину с добавлением оксидов серебра и церия. Эти элементы делают стекло чувствительным к лазерному излучению. С помощью двух лазерных лучей ученые записали дифракционную решетку в объеме стекла. Затем они активировали решетку тепловой обработкой при 500°C.
Для проверки работы оптического модуля ученые подключили его к проектору и наблюдали за тем, как он выводит изображение на экран. Они также измеряли эффективность перенаправления света при разных углах падения и длинах волн.
Результаты эксперимента показали, что оптический модуль работает стабильно при температуре до 200°C и не теряет своих свойств при механическом изгибе или химическом воздействии. Кроме того, он обладает высокой эффективностью перенаправления света (более 80%) для всех видимых длин волн.
Где можно применить
Новый оптический модуль может быть использован в разных устройствах дополненной реальности. Например, он может быть интегрирован в очки дополненной реальности для разных целей: обучения, контроля, навигации и т. д. Такие очки могут быть более удобными, надежными и безопасными для работы в разных средах: на складах, на производстве, на стройке и т. д.
Также новый оптический модуль может быть использован в качестве приборной панели на лобовом стекле автомобилей или самолетов. На такую панель можно выводить разную информацию: скорость, направление, карту местности и т. д. Это может улучшить видимость и безопасность вождения или полета.
Ученые ИТМО планируют продолжить развитие нового подхода к созданию оптических модулей для дополненной реальности. Они хотят увеличить поле зрения модуля, чтобы передавать большее изображение, а также сделать его более адаптивным к разным проекторам.
В следующем году мы планируем добиться полноцветного изображения за счет увеличения количества голограмм и сделать более широкое поле зрения волновода. Благодаря этому волновод сможет передавать изображение большего размера. Мы предполагаем, что в будущем система может стать не просто ассистентом и указателем, но и, например, полноценной AR-средой проектирования для 3D-объектов. Совместно со схемотехниками и программистами мы планируем сделать дисплей, «железо» и другие компоненты для оптического модуля
— ведущий исполнитель проекта, инженер научно-исследовательского центра световодной фотоники Сергей Иванов.
Проект реализован в научно-исследовательском центре оптического материаловедения ИТМО под руководством профессора, директора научно-исследовательского центра оптического материаловедения Николая Никонорова.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Обнаружен «призрачный» и совершенно неизвестный вид человечества
Эксперты говорят, что ветвь находилась… 40 000 лет в полной изоляции....

«Мусор» из глубин Барсучьего логова оказался ценнейшими артефактами таинственного индейского племени
Археологи говорят: в горах Герреро будет еще масса сенсационных открытий....

Раскрыта тайна поразительной живучести чумной бактерии
Быть слабым, чтобы убивать больше — такого парадокса ученые и представить не могли....

США грозит «астероидная слепота»: NASA не будет видеть особо опасные объекты
Были надежды на новый телескоп, но их в буквальном смысле убил новый президент....

Ученые бьют тревогу: Мировой океан стремительно темнеет
Почему эти изменения опасны для всей планеты?...

Вулканологи научились понимать тайные сигналы деревьев, предсказывающие извержения
Оказалось, что природный способ работает лучше любых спецприборов....

Космический телескоп показал, как микроскопические камешки создали... один из самых раскаленных миров в Галактике
«Каменные» облака, «металлический» воздух — планета Тилос не устает поражать астрофизиков....