В ИТМО разработали новый способ создания оптических модулей для устройств дополненной реальности
Ученые использовали объемную голографию — метод записи трехмерного изображения в объемном материале. Новый подход позволяет сделать модули легкими, прочными, безбликовыми и полноцветными. Такие модули могут быть применены в очках дополненной реальности для разных целей, а также в качестве приборной панели на лобовом стекле автомобилей или самолетов.
Дополненная реальность — это технология, которая позволяет наложить виртуальное изображение на реальное окружение. Например, с помощью специальных очков можно увидеть на столе трехмерную модель здания или посмотреть на экране смартфона, как будет выглядеть новая мебель в комнате. Дополненная реальность может быть полезна в разных сферах: образовании, медицине, развлечениях, рекламе и т. д.
Для создания дополненной реальности нужны два основных компонента: проектор и оптический модуль. Проектор генерирует виртуальное изображение и направляет его на оптический модуль. Оптический модуль — это устройство, которое объединяет свет от проектора и свет от окружающего мира и выводит их на глаз пользователя.
Оптический модуль состоит из специальной пластины с дифракционными решетками. Дифракционные решетки — это периодические структуры, которые изменяют направление световых лучей в зависимости от их длины волны. Дифракционные решетки выполняют две функции: они перенаправляют свет от проектора к глазу пользователя (ввод) и пропускают свет от окружающего мира к глазу пользователя (вывод).
Существующие оптические модули обычно создаются на основе волноводов с дифракционными решетками на поверхности. Это означает, что свет от проектора распространяется по тонкой пластине и выходит через специальные структуры на ее краях. Такие модули имеют несколько недостатков: они тяжелые, сложные в изготовлении и создают блики.
Ученые ИТМО предложили альтернативный способ: использовать объемную голографию для записи дифракционных решеток внутри стекла. Объемная голография — это метод записи трехмерного изображения в объемном материале с помощью двух лазерных лучей.
Благодаря этому новый оптический модуль имеет ряд преимуществ перед волноводными аналогами:
Для создания оптического модуля ученые ИТМО использовали стеклянную пластину с добавлением оксидов серебра и церия. Эти элементы делают стекло чувствительным к лазерному излучению. С помощью двух лазерных лучей ученые записали дифракционную решетку в объеме стекла. Затем они активировали решетку тепловой обработкой при 500°C.
Для проверки работы оптического модуля ученые подключили его к проектору и наблюдали за тем, как он выводит изображение на экран. Они также измеряли эффективность перенаправления света при разных углах падения и длинах волн.
Результаты эксперимента показали, что оптический модуль работает стабильно при температуре до 200°C и не теряет своих свойств при механическом изгибе или химическом воздействии. Кроме того, он обладает высокой эффективностью перенаправления света (более 80%) для всех видимых длин волн.
Новый оптический модуль может быть использован в разных устройствах дополненной реальности. Например, он может быть интегрирован в очки дополненной реальности для разных целей: обучения, контроля, навигации и т. д. Такие очки могут быть более удобными, надежными и безопасными для работы в разных средах: на складах, на производстве, на стройке и т. д.
Также новый оптический модуль может быть использован в качестве приборной панели на лобовом стекле автомобилей или самолетов. На такую панель можно выводить разную информацию: скорость, направление, карту местности и т. д. Это может улучшить видимость и безопасность вождения или полета.
Ученые ИТМО планируют продолжить развитие нового подхода к созданию оптических модулей для дополненной реальности. Они хотят увеличить поле зрения модуля, чтобы передавать большее изображение, а также сделать его более адаптивным к разным проекторам.
— ведущий исполнитель проекта, инженер научно-исследовательского центра световодной фотоники Сергей Иванов.
Проект реализован в научно-исследовательском центре оптического материаловедения ИТМО под руководством профессора, директора научно-исследовательского центра оптического материаловедения Николая Никонорова.
Что такое дополненная реальность
Дополненная реальность — это технология, которая позволяет наложить виртуальное изображение на реальное окружение. Например, с помощью специальных очков можно увидеть на столе трехмерную модель здания или посмотреть на экране смартфона, как будет выглядеть новая мебель в комнате. Дополненная реальность может быть полезна в разных сферах: образовании, медицине, развлечениях, рекламе и т. д.
Для создания дополненной реальности нужны два основных компонента: проектор и оптический модуль. Проектор генерирует виртуальное изображение и направляет его на оптический модуль. Оптический модуль — это устройство, которое объединяет свет от проектора и свет от окружающего мира и выводит их на глаз пользователя.
Как работает оптический модуль
Оптический модуль состоит из специальной пластины с дифракционными решетками. Дифракционные решетки — это периодические структуры, которые изменяют направление световых лучей в зависимости от их длины волны. Дифракционные решетки выполняют две функции: они перенаправляют свет от проектора к глазу пользователя (ввод) и пропускают свет от окружающего мира к глазу пользователя (вывод).
Существующие оптические модули обычно создаются на основе волноводов с дифракционными решетками на поверхности. Это означает, что свет от проектора распространяется по тонкой пластине и выходит через специальные структуры на ее краях. Такие модули имеют несколько недостатков: они тяжелые, сложные в изготовлении и создают блики.
Что нового в подходе ИТМО
Ученые ИТМО предложили альтернативный способ: использовать объемную голографию для записи дифракционных решеток внутри стекла. Объемная голография — это метод записи трехмерного изображения в объемном материале с помощью двух лазерных лучей.
Благодаря этому новый оптический модуль имеет ряд преимуществ перед волноводными аналогами:
- состоит из одной пластины толщиной 1 мм, поэтому он легкий и компактный.
- выдерживает температуры до 200°C и устойчив к механическим и химическим воздействиям.
- не создает бликов и обеспечивает высокое качество изображения.
- может работать с разными длинами волн света без потери эффективности.
- может передавать полноцветное изображение (RGB) с помощью одной пластины.
Как проводился эксперимент
Для создания оптического модуля ученые ИТМО использовали стеклянную пластину с добавлением оксидов серебра и церия. Эти элементы делают стекло чувствительным к лазерному излучению. С помощью двух лазерных лучей ученые записали дифракционную решетку в объеме стекла. Затем они активировали решетку тепловой обработкой при 500°C.
Для проверки работы оптического модуля ученые подключили его к проектору и наблюдали за тем, как он выводит изображение на экран. Они также измеряли эффективность перенаправления света при разных углах падения и длинах волн.
Результаты эксперимента показали, что оптический модуль работает стабильно при температуре до 200°C и не теряет своих свойств при механическом изгибе или химическом воздействии. Кроме того, он обладает высокой эффективностью перенаправления света (более 80%) для всех видимых длин волн.
Где можно применить
Новый оптический модуль может быть использован в разных устройствах дополненной реальности. Например, он может быть интегрирован в очки дополненной реальности для разных целей: обучения, контроля, навигации и т. д. Такие очки могут быть более удобными, надежными и безопасными для работы в разных средах: на складах, на производстве, на стройке и т. д.
Также новый оптический модуль может быть использован в качестве приборной панели на лобовом стекле автомобилей или самолетов. На такую панель можно выводить разную информацию: скорость, направление, карту местности и т. д. Это может улучшить видимость и безопасность вождения или полета.
Ученые ИТМО планируют продолжить развитие нового подхода к созданию оптических модулей для дополненной реальности. Они хотят увеличить поле зрения модуля, чтобы передавать большее изображение, а также сделать его более адаптивным к разным проекторам.
В следующем году мы планируем добиться полноцветного изображения за счет увеличения количества голограмм и сделать более широкое поле зрения волновода. Благодаря этому волновод сможет передавать изображение большего размера. Мы предполагаем, что в будущем система может стать не просто ассистентом и указателем, но и, например, полноценной AR-средой проектирования для 3D-объектов. Совместно со схемотехниками и программистами мы планируем сделать дисплей, «железо» и другие компоненты для оптического модуля
— ведущий исполнитель проекта, инженер научно-исследовательского центра световодной фотоники Сергей Иванов.
Проект реализован в научно-исследовательском центре оптического материаловедения ИТМО под руководством профессора, директора научно-исследовательского центра оптического материаловедения Николая Никонорова.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Как на ладони: Обнаружен морской гигант, который виден из космоса
Мегакоралл у Соломоновых островов оказался самым крупным животным Земли....
Спасти планету сможет… африканский червь
В Кении найдено насекомое с удивительными способностями....
Забудьте всё, что вы знали о Луне
Новая теория предлагает в корне иное происхождение ночного светила....
Ляп на ляпе — так профессиональные историки оценили «Гладиатора 2»
Режиссер пришел в бешенство, когда фильм назвали исторически неточным....
Главная тайна Седьмой планеты разгадана через 38 лет
Уран оказался не таким уж странным, как думали ученые....
80 000 лет жизни: какие тайны скрывает самое древнее и большое существо на планете?
Залог невероятного долголетия и удивительного выживания обнаружили учёные....
Раскрыт секрет идеального женского тела?
Оказывается, дело вовсе не в соотношении талии и бедер....
Янтарь из недр Антарктиды раскрыл тайны тропических лесов
Застывшая смола возрастом 90 млн лет как часть исчезнувшей экосистемы....
Саблезубый котёнок томился во льдах Якутии 35 тысяч лет
Благодаря находке стало известно, что сородичи пушистика обитали в столь холодных местах....
Ученые рассказали о жутких последствиях сна
Что происходит, когда снится собственная смерть?...
Носи умные очки или увольняйся!
Amazon планирует заставить всех курьеров носить этот электронный прибор....
Невероятно! Ученая вылечила свой рак вирусами собственного производства
Если человек хочет жить — медицина бессильна....
Разгадано учеными: почему города разрушают сердце и разум
Причины, которые нашли исследователи, вас удивят....
Турбулентность отменяется! А пилоты-люди вообще будут не нужны
Искусственный интеллект может в корне изменить авиацию....
Надеялись на Беса: древние египтянки при беременности хлебали галлюциногенные смеси
Думали, что божок с двусмысленным для нас именем убережёт....
Филигранная работа: Механический скарабей поражает точностью
Робот способен полноценно манипулировать крупногабаритом даже в тесноте....