Революция гадолиния-висмута: новый материал готовится навсегда изменить мир электроники
7 969

Революция гадолиния-висмута: новый материал готовится навсегда изменить мир электроники

Ученые из России и Китая создали уникальный материал для преобразования энергии, не имеющий аналогов в природе.


Он базируется на тонких пленках оксида редкоземельного металла гадолиния, обработанных под действием гадолиниевой плазмы, и дополненных ионами висмута. Такой материал может использоваться в различных сферах, включая электронику, светотехнику, медицину, оптику, экологию, энергетику и другие отрасли промышленности.

Оксиды редкоземельных металлов, к которым относится гадолиний, уже давно применяются в различных технологиях. Они могут преобразовывать энергию электромагнитного излучения и использоваться для создания датчиков. Однако у таких материалов есть существенный недостаток — из-за узких спектральных линий поглощения и излучения, преобразование энергии происходит в ограниченном спектральном диапазоне, что негативно сказывается на эффективности процесса конверсии света.

Чтобы решить эту проблему, ученые Физико-технологического института УрФУ бомбардировали пленки оксида гадолиния ионами висмута. Висмут не является редкоземельным металлом и имеет узкие спектральные линии поглощения и излучения. Однако он отличается поливалентностью, то есть большим разнообразием возможных валентных состояний, что позволяет создавать материалы, способные проявлять люминесценцию в широком диапазоне от инфракрасного до ультрафиолетового излучения.

Кроме того, ион висмута эффективно поглощает световую энергию и передает ее другому иону, который поглощает хуже, но хорошо излучает. Таким образом, «помощь» иона висмута усиливает люминесценцию второго иона. И когда созданный материал поглощает энергию фотонов, она передается в оптические центры, которые демонстрируют излучение соответственно в красном, зеленом и синем спектральных диапазонах.

В результате добавления ионов висмута к пленкам оксида гадолиния ученые смогли создать материал, который может преобразовывать энергию в широком диапазоне излучения от инфракрасного до ультрафиолетового и обладает богатством и разнообразием дефектов, в результате чего возникают оптические эмиссионные центры.

Благодаря одновременной «бомбардировке» исходного оксида гадолиния ионами висмута мы в одном материале получили целый набор вариантов преобразования световой энергии. Технология получения материала отличается быстродействием и минимальными потерями энергии. При этом, если мы понимаем физический механизм возбуждения люминесценции и преобразования энергии, значит, можем им управлять. Иначе говоря, целенаправленно варьировать свойства легированных пленок, добиваясь наилучших результатов, в зависимости от области применения пленок и содержания задач и, следовательно, максимальной экономичности их использования. Так, просматривается перспектива создания миниатюрного сенсора, с помощью которого будет возможным быстро и точно определять различные виды излучения по цвету индикаторного свечения

— Юлия Кузнецова, старший научный сотрудник Научно-исследовательской лаборатории «Физика функциональных материалов углеродной микро- и оптоэлектроники» УрФУ.

Создание такого материала является важным прорывом в области эффективного преобразования энергии. Новый материал может использоваться для создания биосенсоров, фотодетекторов, светодиодов, дисплеев, быстродействующих функциональных структур и приборов нового поколения, а также информационных и навигационных элементов.

Работа ученых представляет собой пример перспективных материалов, которые могут преобразовывать энергию на основе фотонов и могут быть использованы для создания новых технологий. Когда материал окажется готовым к использованию, он может изменить общую картину в области энергетики и технологических процессов.
Наши новостные каналы

Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.

Рекомендуем для вас