Благодаря алмазам сделан важный шаг к квантовому интернету
Алмазный материал имеет большое значение для будущих технологий, таких как квантовый интернет. Специальные дефектные центры могут использоваться в качестве квантовых битов (кубитов) и излучать отдельные частицы света, которые называются одиночными фотонами.
Чтобы обеспечить передачу данных с приемлемой скоростью на большие расстояния в квантовой сети, все фотоны должны собираться в оптических волокнах и передаваться без потерь. Также необходимо обеспечить, чтобы все эти фотоны имели одинаковый цвет, то есть одинаковую частоту. Выполнить эти требования до недавних пор не удавалось.
Но вот учёные впервые добились успеха в генерации и обнаружении фотонов со стабильными частотами фотонов, излучаемых квантовыми источниками света, или, точнее, из центров дефектов с азотными вакансиями в алмазных наноструктурах. Исследователи из группы интегрированной квантовой фотоники, возглавляемой профессором Тимом Шредером из Берлинского университета Гумбольдта Статья, опубликовали статью об успехах в журнале Physical Review X.
Они добились результатов благодаря тщательному выбору алмазного материала, сложным методам нанопроизводства, выполненным в Совместной лаборатории алмазной нанофотоники Института Фердинанда-Брауна и Института Лейбница, а также специальным протоколам экспериментального контроля. Оказалось, что шум электронов, который ранее нарушал передачу данных, можно значительно уменьшить, так что фотоны излучаются на стабильной частоте.
Кроме того, берлинские исследователи показали, что текущие скорости связи между пространственно разделёнными квантовыми системами можно увеличить более чем в 1000 раз с помощью разработанных методов — и это важный шаг к будущему квантовому интернету.
Ученые интегрировали отдельные кубиты в оптимизированные алмазные наноструктуры. Эти структуры в 1000 раз тоньше человеческого волоса и позволяют направлять излучаемые фотоны в стеклянные волокна.
Однако во время изготовления наноструктур поверхность материала повреждается на атомарном уровне, и свободные электроны создают неконтролируемый шум для генерируемых частиц света. Так что обычно шум, сравнимый с нестабильной радиочастотой, вызывает колебания частоты фотонов, и так возникает препятствие перед успешными квантовыми операциями, такими как запутывание.
Особенность используемого материала — относительно высокая плотность атомов примеси азота в кристаллической решётке. Они-то, как полагают учёные, и защищают квантовый источник света от электронного шума на поверхности наноструктуры. Однако точные физические процессы необходимо изучить более подробно в будущем, признала Лаура Орфал-Кобин, которая исследует квантовые системы вместе с профессором Тимом Шредером.
Выводы из экспериментов подтверждаются статистикой и моделированием, которые доктор Грегор Пиплоу из той же исследовательской группы разрабатывает и внедряет вместе с физиками-экспериментаторами.
Чтобы обеспечить передачу данных с приемлемой скоростью на большие расстояния в квантовой сети, все фотоны должны собираться в оптических волокнах и передаваться без потерь. Также необходимо обеспечить, чтобы все эти фотоны имели одинаковый цвет, то есть одинаковую частоту. Выполнить эти требования до недавних пор не удавалось.
Но вот учёные впервые добились успеха в генерации и обнаружении фотонов со стабильными частотами фотонов, излучаемых квантовыми источниками света, или, точнее, из центров дефектов с азотными вакансиями в алмазных наноструктурах. Исследователи из группы интегрированной квантовой фотоники, возглавляемой профессором Тимом Шредером из Берлинского университета Гумбольдта Статья, опубликовали статью об успехах в журнале Physical Review X.
Они добились результатов благодаря тщательному выбору алмазного материала, сложным методам нанопроизводства, выполненным в Совместной лаборатории алмазной нанофотоники Института Фердинанда-Брауна и Института Лейбница, а также специальным протоколам экспериментального контроля. Оказалось, что шум электронов, который ранее нарушал передачу данных, можно значительно уменьшить, так что фотоны излучаются на стабильной частоте.
Кроме того, берлинские исследователи показали, что текущие скорости связи между пространственно разделёнными квантовыми системами можно увеличить более чем в 1000 раз с помощью разработанных методов — и это важный шаг к будущему квантовому интернету.
Ученые интегрировали отдельные кубиты в оптимизированные алмазные наноструктуры. Эти структуры в 1000 раз тоньше человеческого волоса и позволяют направлять излучаемые фотоны в стеклянные волокна.
Однако во время изготовления наноструктур поверхность материала повреждается на атомарном уровне, и свободные электроны создают неконтролируемый шум для генерируемых частиц света. Так что обычно шум, сравнимый с нестабильной радиочастотой, вызывает колебания частоты фотонов, и так возникает препятствие перед успешными квантовыми операциями, такими как запутывание.
Особенность используемого материала — относительно высокая плотность атомов примеси азота в кристаллической решётке. Они-то, как полагают учёные, и защищают квантовый источник света от электронного шума на поверхности наноструктуры. Однако точные физические процессы необходимо изучить более подробно в будущем, признала Лаура Орфал-Кобин, которая исследует квантовые системы вместе с профессором Тимом Шредером.
Выводы из экспериментов подтверждаются статистикой и моделированием, которые доктор Грегор Пиплоу из той же исследовательской группы разрабатывает и внедряет вместе с физиками-экспериментаторами.
- Дмитрий Ладыгин
- pixabay.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Как на ладони: Обнаружен морской гигант, который виден из космоса
Мегакоралл у Соломоновых островов оказался самым крупным животным Земли....
Спасти планету сможет… африканский червь
В Кении найдено насекомое с удивительными способностями....
«Орешник», «Бук» и «Тополь»: искусный нейминг от российских военных конструкторов
Наука как сбить Запад с толку....
Главная тайна Седьмой планеты разгадана через 38 лет
Уран оказался не таким уж странным, как думали ученые....
80 000 лет жизни: какие тайны скрывает самое древнее и большое существо на планете?
Залог невероятного долголетия и удивительного выживания обнаружили учёные....
Раскрыт секрет идеального женского тела?
Оказывается, дело вовсе не в соотношении талии и бедер....
Ученые раскрыли тайну сигнала, после которого началось самое мощное извержение в истории
Разгадка оказалась потрясающей во всех смыслах....
Саблезубый котёнок томился во льдах Якутии 35 тысяч лет
Благодаря находке стало известно, что сородичи пушистика обитали в столь холодных местах....
Ученая вылечила свой рак вирусами собственного производства
Если человек хочет жить — медицина бессильна....
Эти «красные монстры» вообще не должны существовать
Что узнали астрономы о трех невозможно огромных галактиках....
Почти бессмертные существа помогут человечеству покорить глубокий космос
Ученым, наконец, удалось «взломать» код поразительной живучести тихоходок....
Разгадано учеными: почему города разрушают сердце и разум
Причины, которые нашли исследователи, вас удивят....
Ещё один одинокий: в Балтийском море обнаружен дельфин, который может говорить только сам с собой
Совсем как старый вдовец, которого давно не навещали близкие....
Турбулентность отменяется! А пилоты-люди вообще будут не нужны
Искусственный интеллект может в корне изменить авиацию....
Надеялись на Беса: древние египтянки при беременности хлебали галлюциногенные смеси
Думали, что божок с двусмысленным для нас именем убережёт....
Большой мозг — не значит самый умный
Последнее исследование собак показало парадоксальные результаты....