Благодаря алмазам сделан важный шаг к квантовому интернету
Алмазный материал имеет большое значение для будущих технологий, таких как квантовый интернет. Специальные дефектные центры могут использоваться в качестве квантовых битов (кубитов) и излучать отдельные частицы света, которые называются одиночными фотонами.
Чтобы обеспечить передачу данных с приемлемой скоростью на большие расстояния в квантовой сети, все фотоны должны собираться в оптических волокнах и передаваться без потерь. Также необходимо обеспечить, чтобы все эти фотоны имели одинаковый цвет, то есть одинаковую частоту. Выполнить эти требования до недавних пор не удавалось.
Но вот учёные впервые добились успеха в генерации и обнаружении фотонов со стабильными частотами фотонов, излучаемых квантовыми источниками света, или, точнее, из центров дефектов с азотными вакансиями в алмазных наноструктурах. Исследователи из группы интегрированной квантовой фотоники, возглавляемой профессором Тимом Шредером из Берлинского университета Гумбольдта Статья, опубликовали статью об успехах в журнале Physical Review X.
Они добились результатов благодаря тщательному выбору алмазного материала, сложным методам нанопроизводства, выполненным в Совместной лаборатории алмазной нанофотоники Института Фердинанда-Брауна и Института Лейбница, а также специальным протоколам экспериментального контроля. Оказалось, что шум электронов, который ранее нарушал передачу данных, можно значительно уменьшить, так что фотоны излучаются на стабильной частоте.
Кроме того, берлинские исследователи показали, что текущие скорости связи между пространственно разделёнными квантовыми системами можно увеличить более чем в 1000 раз с помощью разработанных методов — и это важный шаг к будущему квантовому интернету.
Ученые интегрировали отдельные кубиты в оптимизированные алмазные наноструктуры. Эти структуры в 1000 раз тоньше человеческого волоса и позволяют направлять излучаемые фотоны в стеклянные волокна.
Однако во время изготовления наноструктур поверхность материала повреждается на атомарном уровне, и свободные электроны создают неконтролируемый шум для генерируемых частиц света. Так что обычно шум, сравнимый с нестабильной радиочастотой, вызывает колебания частоты фотонов, и так возникает препятствие перед успешными квантовыми операциями, такими как запутывание.
Особенность используемого материала — относительно высокая плотность атомов примеси азота в кристаллической решётке. Они-то, как полагают учёные, и защищают квантовый источник света от электронного шума на поверхности наноструктуры. Однако точные физические процессы необходимо изучить более подробно в будущем, признала Лаура Орфал-Кобин, которая исследует квантовые системы вместе с профессором Тимом Шредером.
Выводы из экспериментов подтверждаются статистикой и моделированием, которые доктор Грегор Пиплоу из той же исследовательской группы разрабатывает и внедряет вместе с физиками-экспериментаторами.
Чтобы обеспечить передачу данных с приемлемой скоростью на большие расстояния в квантовой сети, все фотоны должны собираться в оптических волокнах и передаваться без потерь. Также необходимо обеспечить, чтобы все эти фотоны имели одинаковый цвет, то есть одинаковую частоту. Выполнить эти требования до недавних пор не удавалось.
Но вот учёные впервые добились успеха в генерации и обнаружении фотонов со стабильными частотами фотонов, излучаемых квантовыми источниками света, или, точнее, из центров дефектов с азотными вакансиями в алмазных наноструктурах. Исследователи из группы интегрированной квантовой фотоники, возглавляемой профессором Тимом Шредером из Берлинского университета Гумбольдта Статья, опубликовали статью об успехах в журнале Physical Review X.
Они добились результатов благодаря тщательному выбору алмазного материала, сложным методам нанопроизводства, выполненным в Совместной лаборатории алмазной нанофотоники Института Фердинанда-Брауна и Института Лейбница, а также специальным протоколам экспериментального контроля. Оказалось, что шум электронов, который ранее нарушал передачу данных, можно значительно уменьшить, так что фотоны излучаются на стабильной частоте.
Кроме того, берлинские исследователи показали, что текущие скорости связи между пространственно разделёнными квантовыми системами можно увеличить более чем в 1000 раз с помощью разработанных методов — и это важный шаг к будущему квантовому интернету.
Ученые интегрировали отдельные кубиты в оптимизированные алмазные наноструктуры. Эти структуры в 1000 раз тоньше человеческого волоса и позволяют направлять излучаемые фотоны в стеклянные волокна.
Однако во время изготовления наноструктур поверхность материала повреждается на атомарном уровне, и свободные электроны создают неконтролируемый шум для генерируемых частиц света. Так что обычно шум, сравнимый с нестабильной радиочастотой, вызывает колебания частоты фотонов, и так возникает препятствие перед успешными квантовыми операциями, такими как запутывание.
Особенность используемого материала — относительно высокая плотность атомов примеси азота в кристаллической решётке. Они-то, как полагают учёные, и защищают квантовый источник света от электронного шума на поверхности наноструктуры. Однако точные физические процессы необходимо изучить более подробно в будущем, признала Лаура Орфал-Кобин, которая исследует квантовые системы вместе с профессором Тимом Шредером.
Выводы из экспериментов подтверждаются статистикой и моделированием, которые доктор Грегор Пиплоу из той же исследовательской группы разрабатывает и внедряет вместе с физиками-экспериментаторами.
- Дмитрий Ладыгин
- pixabay.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Марс отменяется: три причины, почему российские эксперты ставят крест на Красной планете
Почему пробирка с Марса опаснее любого астероида, как галактические лучи «взрывают» мозг и при чем тут Китай? Честный разбор рисков от Российской академии наук...
Главная тайна Черного моря разгадана: Ученые рассказали, почему там на дне очень прозрачная пресная вода
Чтобы найти ответ, исследователям пришлось заглянуть на 8 тысяч лет назад...
«Не повторяйте наших ошибок!» 100 лет борьбы с лесными пожарами обернулись катастрофой для США
Эксперты рассказали, почему, казалось бы, проверенная тактика только усугубила ситуацию с лесным огнем...
Мегамонстры с 7-го этажа: в древних океанах шла такая война хищников, где у современных косаток не было бы ни единого шанса
Ученые рассказали, куда исчезли «боги» мезозойских морей и почему сейчас их существование было бы невозможно...
ДНК 4000-летней овцы оказалось ключом к древней тайне, стоившей жизни миллионам
Поразительно, но археологи нашли штамм древней чумы, кошмаривший всю Евразию, в самом таинственном российском городе — Аркаиме. Почему же так получилось?...
Мощнее леса в десятки раз: в ЮАР нашли «живые камни», которые выкачивают CO₂ с бешеной скоростью
Микробиалиты могли бы спасти Землю от потепления, но у этих «каменных насосов» есть один нюанс...
Супертелескоп James Webb только запутал ученых, а планета-«близнец» Земли стала еще загадочнее
Эксперты рассказали, почему самый мощный телескоп в истории не смог разобраться с атмосферой TRAPPIST-1e. Аппарат не виноват. Но тогда кто?...
Новое исследование показало: если бы не этот «российский ген», древние люди вряд ли бы заселили Америку
Ученые рассказали, почему Алтай в ДНК — это главный секрет феноменального здоровья индейцев...
Грядет научный прорыв: Зачем в последние годы ученые по всему миру создают очень странные компьютеры?
Новые аппараты… не просто живые: они стирают различия между ЭВМ и человеческим мозгом...
20-летнее наблюдение со спутников «сломало климат»: Теперь ученым придется полностью менять все теории
Зато теперь понятно, почему в двух близких городах могут быть... разные времена года...
Секрет 14-го моря России: куда оно пропало и почему о нем снова заговорили?
Эксперты напоминают: Кроме Печорского, у России есть и 15-е «забытое» море, и оно тоже возвращается на карты...
Она нам больше не праматерь! Почему легендарную Люси могут «изгнать» из числа наших предков?
Ведущие антропологи мира схлестнулись в настоящей войне. Кто же окажется победителем?...