
Благодаря алмазам сделан важный шаг к квантовому интернету
Алмазный материал имеет большое значение для будущих технологий, таких как квантовый интернет. Специальные дефектные центры могут использоваться в качестве квантовых битов (кубитов) и излучать отдельные частицы света, которые называются одиночными фотонами.
Чтобы обеспечить передачу данных с приемлемой скоростью на большие расстояния в квантовой сети, все фотоны должны собираться в оптических волокнах и передаваться без потерь. Также необходимо обеспечить, чтобы все эти фотоны имели одинаковый цвет, то есть одинаковую частоту. Выполнить эти требования до недавних пор не удавалось.
Но вот учёные впервые добились успеха в генерации и обнаружении фотонов со стабильными частотами фотонов, излучаемых квантовыми источниками света, или, точнее, из центров дефектов с азотными вакансиями в алмазных наноструктурах. Исследователи из группы интегрированной квантовой фотоники, возглавляемой профессором Тимом Шредером из Берлинского университета Гумбольдта Статья, опубликовали статью об успехах в журнале Physical Review X.
Они добились результатов благодаря тщательному выбору алмазного материала, сложным методам нанопроизводства, выполненным в Совместной лаборатории алмазной нанофотоники Института Фердинанда-Брауна и Института Лейбница, а также специальным протоколам экспериментального контроля. Оказалось, что шум электронов, который ранее нарушал передачу данных, можно значительно уменьшить, так что фотоны излучаются на стабильной частоте.
Кроме того, берлинские исследователи показали, что текущие скорости связи между пространственно разделёнными квантовыми системами можно увеличить более чем в 1000 раз с помощью разработанных методов — и это важный шаг к будущему квантовому интернету.
Ученые интегрировали отдельные кубиты в оптимизированные алмазные наноструктуры. Эти структуры в 1000 раз тоньше человеческого волоса и позволяют направлять излучаемые фотоны в стеклянные волокна.
Однако во время изготовления наноструктур поверхность материала повреждается на атомарном уровне, и свободные электроны создают неконтролируемый шум для генерируемых частиц света. Так что обычно шум, сравнимый с нестабильной радиочастотой, вызывает колебания частоты фотонов, и так возникает препятствие перед успешными квантовыми операциями, такими как запутывание.
Особенность используемого материала — относительно высокая плотность атомов примеси азота в кристаллической решётке. Они-то, как полагают учёные, и защищают квантовый источник света от электронного шума на поверхности наноструктуры. Однако точные физические процессы необходимо изучить более подробно в будущем, признала Лаура Орфал-Кобин, которая исследует квантовые системы вместе с профессором Тимом Шредером.
Выводы из экспериментов подтверждаются статистикой и моделированием, которые доктор Грегор Пиплоу из той же исследовательской группы разрабатывает и внедряет вместе с физиками-экспериментаторами.
Чтобы обеспечить передачу данных с приемлемой скоростью на большие расстояния в квантовой сети, все фотоны должны собираться в оптических волокнах и передаваться без потерь. Также необходимо обеспечить, чтобы все эти фотоны имели одинаковый цвет, то есть одинаковую частоту. Выполнить эти требования до недавних пор не удавалось.
Но вот учёные впервые добились успеха в генерации и обнаружении фотонов со стабильными частотами фотонов, излучаемых квантовыми источниками света, или, точнее, из центров дефектов с азотными вакансиями в алмазных наноструктурах. Исследователи из группы интегрированной квантовой фотоники, возглавляемой профессором Тимом Шредером из Берлинского университета Гумбольдта Статья, опубликовали статью об успехах в журнале Physical Review X.
Они добились результатов благодаря тщательному выбору алмазного материала, сложным методам нанопроизводства, выполненным в Совместной лаборатории алмазной нанофотоники Института Фердинанда-Брауна и Института Лейбница, а также специальным протоколам экспериментального контроля. Оказалось, что шум электронов, который ранее нарушал передачу данных, можно значительно уменьшить, так что фотоны излучаются на стабильной частоте.
Кроме того, берлинские исследователи показали, что текущие скорости связи между пространственно разделёнными квантовыми системами можно увеличить более чем в 1000 раз с помощью разработанных методов — и это важный шаг к будущему квантовому интернету.
Ученые интегрировали отдельные кубиты в оптимизированные алмазные наноструктуры. Эти структуры в 1000 раз тоньше человеческого волоса и позволяют направлять излучаемые фотоны в стеклянные волокна.
Однако во время изготовления наноструктур поверхность материала повреждается на атомарном уровне, и свободные электроны создают неконтролируемый шум для генерируемых частиц света. Так что обычно шум, сравнимый с нестабильной радиочастотой, вызывает колебания частоты фотонов, и так возникает препятствие перед успешными квантовыми операциями, такими как запутывание.
Особенность используемого материала — относительно высокая плотность атомов примеси азота в кристаллической решётке. Они-то, как полагают учёные, и защищают квантовый источник света от электронного шума на поверхности наноструктуры. Однако точные физические процессы необходимо изучить более подробно в будущем, признала Лаура Орфал-Кобин, которая исследует квантовые системы вместе с профессором Тимом Шредером.
Выводы из экспериментов подтверждаются статистикой и моделированием, которые доктор Грегор Пиплоу из той же исследовательской группы разрабатывает и внедряет вместе с физиками-экспериментаторами.
- Дмитрий Ладыгин
- pixabay.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Планшет, пролежавший в Темзе пять лет, помог раскрыть серию запутанных преступлений
Эксперты говорят: даже вода не смогла стереть цифровые следы....

«Инопланетяне» на Земле? Древние 8-метровые «грибы» оказались совершенно неизвестной формой жизни
Вот уже 180 лет подряд живые «башни» ставят в тупик всю науку....

«Шерстистый дьявол» обнаружен в пустыне, на границе Мексики и США
Ученые говорят: такой уникальной находки не было последние полвека....

Американские спецслужбы скрывают правду о самой древней из библейских реликвий?
Экстрасенс ЦРУ предупредил: Ковчег Завета убьет каждого, кто к нему прикоснется....

Похоже, что проблема космического мусора в скором времени будет решена раз и навсегда
Новая технология не только очистит космос, но и поможет спутникам работать втрое дольше....

Скрытые миллиарды: население Земли оказалось гораздо больше, чем считалось
Новые исследования бросают вызов официальным демографическим данным....

Почему мы не помним себя младенцами? Новое исследование дало ответы
Возможно, помним, но «ларчик» заперт....

Археологи ликуют: в Испании нашли рисунки, которые старше человечества!
200 000-летняя находка заставит пересмотреть учебники....

Астрофизики рассказали, почему Вселенная замедляется вопреки предсказаниям Эйнштейна
Если открытие DESI и ослабление темной энергии подтвердится, учебники придется переписать....

iPhone, давай до свидания! Илон Маск презентовал инновационный смартфон PhoneX
Это устройство слишком прекрасно для нашей реальности....

Ученые поражены: мыши, как спасатели, оживляют своих сородичей, попавших в беду
Открытие, от которого дрогнет даже самое черствое сердце....

Кислород устарел! Ученые нашли новый ключ к внеземной жизни
Гицеанические миры могут стать новой надеждой астрофизиков....

Самые массовые и дикие розыгрыши на 1 апреля в мировой истории
Это вам не просто «вся спина белая»....

На 100 000 лет раньше людей: ученые рассказали, кто устроил первые похороны на планете
Загадочные карлики Homo naledi, чей мозг был размером с апельсин, оказались не глупее нас с вами....

Секретная мутация гена: оказалось, ее имеют все обитатели Марианской впадины
Поразительное открытие китайских ученых может изменить всю теорию эволюции....

10 лет за 48 часов: ИИ полностью переиграл ученых в поисках секрета супербактерий
Однако эксперты предупреждают: нейросети не только ускоряют науку, они запросто могут столкнуть нас в пропасть....