Корейские учёные получили твёрдый электролит с суперионной проводимостью
Новинка представляет собой батарею с твёрдым электролитом между анодом и катодом. Аккумулятор нового поколения отличается высокой плотностью энергии и значительно меньшим риском возгорания и взрыва, чем обычные литий-ионные источники питания.
В последние годы исследования материалов в области полностью твердотельных аккумуляторов были сосредоточены на стратегиях максимальной кристалличности материала для достижения ионной проводимости, которая была бы аналогична проводимости жидких электролитов. Речь идёт об ионной проводимости 10 мкСм/см или более. Однако этот подход требует стадии кристаллизации при температуре выше 500 °C в течение нескольких дней, то есть является затратным и вызывает проблемы с деформацией.
Исследовательская группа под руководством Хенгчула Кима из Исследовательского центра энергетических материалов Корейского института науки и технологий (KIST) объявила, что они успешно синтезировали твёрдый электролит с суперионной проводимостью и высокой упругой деформируемостью при комнатной температуре и нормальном давлении. Исследование привлекло внимание, поскольку может увеличить производительность для всех твердотельных аккумуляторов и решить проблему, связанную с интерфейсом за счёт улучшения упругой деформации. Исследование опубликовано в журнале Advanced Functional Materials («Передовые функциональные материалы»).
Исследовательская группа Кима сосредоточилась на кристаллографических особенностях сульфидов аргиродита, минерала с содержанием германия. Новый твёрдый электролит, полученный методом однокамерного нагрева при комнатной температуре, обладает высокой кристалличностью (~ 57,39%) и ионной проводимостью (~ 13,23 мкСм/см) без какой-либо высокотемпературной термообработки. Более того, исследование обеспечило самую высокую производительность среди описанных методов синтеза сверхпроводящих материалов с твёрдым электролитом.
Синтезированный материал также обладает модулем упругости около 12.51 гПа, что является одним из самых низких зарегистрированных значений для твёрдых электролитов с суперионной проводимостью. И это также выгодно для улучшения межфазных характеристик полностью твердотельных аккумуляторов. Более того, новый процесс в одной ёмкости при комнатной температуре и нормальном давлении может быть завершён менее чем за 15 часов, что является наивысшей производительностью для любого твёрдого электролита с суперионной проводимостью. Это уникальное достижение с производительностью материала, которая примерно в 2–6 раз выше, чем у традиционных процессов синтеза сверхпроводящих твёрдых электролитов.
— Хенгчула Кима, Исследовательский центр энергетических материалов KIST.
В последние годы исследования материалов в области полностью твердотельных аккумуляторов были сосредоточены на стратегиях максимальной кристалличности материала для достижения ионной проводимости, которая была бы аналогична проводимости жидких электролитов. Речь идёт об ионной проводимости 10 мкСм/см или более. Однако этот подход требует стадии кристаллизации при температуре выше 500 °C в течение нескольких дней, то есть является затратным и вызывает проблемы с деформацией.
Исследовательская группа под руководством Хенгчула Кима из Исследовательского центра энергетических материалов Корейского института науки и технологий (KIST) объявила, что они успешно синтезировали твёрдый электролит с суперионной проводимостью и высокой упругой деформируемостью при комнатной температуре и нормальном давлении. Исследование привлекло внимание, поскольку может увеличить производительность для всех твердотельных аккумуляторов и решить проблему, связанную с интерфейсом за счёт улучшения упругой деформации. Исследование опубликовано в журнале Advanced Functional Materials («Передовые функциональные материалы»).
Исследовательская группа Кима сосредоточилась на кристаллографических особенностях сульфидов аргиродита, минерала с содержанием германия. Новый твёрдый электролит, полученный методом однокамерного нагрева при комнатной температуре, обладает высокой кристалличностью (~ 57,39%) и ионной проводимостью (~ 13,23 мкСм/см) без какой-либо высокотемпературной термообработки. Более того, исследование обеспечило самую высокую производительность среди описанных методов синтеза сверхпроводящих материалов с твёрдым электролитом.
Синтезированный материал также обладает модулем упругости около 12.51 гПа, что является одним из самых низких зарегистрированных значений для твёрдых электролитов с суперионной проводимостью. И это также выгодно для улучшения межфазных характеристик полностью твердотельных аккумуляторов. Более того, новый процесс в одной ёмкости при комнатной температуре и нормальном давлении может быть завершён менее чем за 15 часов, что является наивысшей производительностью для любого твёрдого электролита с суперионной проводимостью. Это уникальное достижение с производительностью материала, которая примерно в 2–6 раз выше, чем у традиционных процессов синтеза сверхпроводящих твёрдых электролитов.
Новый материал послужит толчком к коммерческому использованию полностью твердотельных аккумуляторов для электромобилей и систем хранения энергии (ESS)
— Хенгчула Кима, Исследовательский центр энергетических материалов KIST.
- Дмитрий Ладыгин
- pixabay.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Марс отменяется: три причины, почему российские эксперты ставят крест на Красной планете
Почему пробирка с Марса опаснее любого астероида, как галактические лучи «взрывают» мозг и при чем тут Китай? Честный разбор рисков от Российской академии наук...
«Не повторяйте наших ошибок!» 100 лет борьбы с лесными пожарами обернулись катастрофой для США
Эксперты рассказали, почему, казалось бы, проверенная тактика только усугубила ситуацию с лесным огнем...
Главная тайна Черного моря разгадана: Ученые рассказали, почему там на дне очень прозрачная пресная вода
Чтобы найти ответ, исследователям пришлось заглянуть на 8 тысяч лет назад...
Мегамонстры с 7-го этажа: в древних океанах шла такая война хищников, где у современных косаток не было бы ни единого шанса
Ученые рассказали, куда исчезли «боги» мезозойских морей и почему сейчас их существование было бы невозможно...
ДНК 4000-летней овцы оказалось ключом к древней тайне, стоившей жизни миллионам
Поразительно, но археологи нашли штамм древней чумы, кошмаривший всю Евразию, в самом таинственном российском городе — Аркаиме. Почему же так получилось?...
Мощнее леса в десятки раз: в ЮАР нашли «живые камни», которые выкачивают CO₂ с бешеной скоростью
Микробиалиты могли бы спасти Землю от потепления, но у этих «каменных насосов» есть один нюанс...
Супертелескоп James Webb только запутал ученых, а планета-«близнец» Земли стала еще загадочнее
Эксперты рассказали, почему самый мощный телескоп в истории не смог разобраться с атмосферой TRAPPIST-1e. Аппарат не виноват. Но тогда кто?...
Новое исследование показало: если бы не этот «российский ген», древние люди вряд ли бы заселили Америку
Ученые рассказали, почему Алтай в ДНК — это главный секрет феноменального здоровья индейцев...
Грядет научный прорыв: Зачем в последние годы ученые по всему миру создают очень странные компьютеры?
Новые аппараты… не просто живые: они стирают различия между ЭВМ и человеческим мозгом...
20-летнее наблюдение со спутников «сломало климат»: Теперь ученым придется полностью менять все теории
Зато теперь понятно, почему в двух близких городах могут быть... разные времена года...
Она нам больше не праматерь! Почему легендарную Люси могут «изгнать» из числа наших предков?
Ведущие антропологи мира схлестнулись в настоящей войне. Кто же окажется победителем?...
Секрет 14-го моря России: куда оно пропало и почему о нем снова заговорили?
Эксперты напоминают: Кроме Печорского, у России есть и 15-е «забытое» море, и оно тоже возвращается на карты...