
Двуслойный графен: Квантовый туннельный переход к российской электронике будущего
Научный мир в очередной раз обратил свой взгляд на перспективные свойства графена в свете недавних исследований Московского физико-технического института (МФТИ). Российские ученые изучили двуслойный графен и сделали заключение о доминирующем квантовом туннельном типе проводимости в этом уникальном материале. Результаты экспериментов открывают новые технологические возможности для создания удивительных образцов электроники.
Для тех, кто не знает, графен — это кристаллический аллотроп углерода, представляющий собой плоский монослой из атомов углерода, которые образуют гексагональную решетку. Графен имеет уникальные физические свойства, такие как высокая прочность, гибкость и проводимость. Эти свойства делают его одним из наиболее перспективных материалов для производства электронных устройств будущего. Недавнее исследование МФТИ дополняет портфолио научных достижений в этом направлении и открывает новые горизонты для разработок в области электроники.
В ходе экспериментов, проведенных исследовательской группой МФТИ, было установлено, что квантовый туннельный тип проводимости доминирует в двуслойном графене. Это означает, что в отличие от традиционной проводимости, основывающейся на передаче электронов между атомами, в данном случае электроны «туннелируют» сквозь энергетические барьеры благодаря квантово-механическим эффектам. Такой механизм проводимости позволяет достигать значительно больших скоростей и эффективности, чем это возможно в традиционных материалах.

российские ученые сделали заключение о доминирующем квантовом туннельном типе проводимости в этом перспективном материале.
Простыми словами, квантовый туннельный тип проводимости позволяет зарядам преодолевать потенциальные барьеры, которые им мешают двигаться. Более того, этот метод позволяет получать очень высокую скорость передачи информации, что делает его особенно привлекательным для применения в электронике и технологиях, связанных с передачей данных.
Несмотря на преимущества, существует и ряд ограничений при использовании квантового туннельного типа проводимости. В частности, это связано с тем, что данный метод применим только для тех материалов, которые обладают определенными электрическими свойствами, а также требует специальных устройств для его реализации.
Тем не менее в целом квантовый туннельный тип проводимости представляет собой один из перспективных методов передачи зарядов, который имеет широкий спектр применения в современной электронике и технологиях полупроводников.
Открытие квантового туннельного типа проводимости в двуслойном графене — это гигантский шаг вперед в понимании природы этого материала и путей его применения. Следует отметить, что туннельный эффект в двухслойном графене позволяет детектировать не только излучения, но и следовые количества химических и биологических соединений, то есть выступать в роли чувствительного химического и биологического сенсора.
Возможности, открывшиеся в ходе исследования, представляют собой реальные перспективы разработки и создания нового поколения электронных устройств, включая более быстрые компьютеры, электронные схемы улучшенной энергоэффективности и автоматические системы обработки информации.
Очевидно, что внедрение новых технологий на основе квантового туннелирования в современный мир обещает впечатляющие инновации. Впрочем, до того, как внедрить результаты открытия, предстоит научиться решать ряд практических вопросов, связанных с новым материалом.
Получить качественные образцы двухслойного графена намного сложнее, чем однослойного, при этом электрические свойства двухслойного графена (например, подвижность) существенно зависят от качества и точности совмещения слоёв.
Для изучения свойств двухслойного графена учеными предпринимаются эксперименты с контролируемым поворотом слоев. Исследования показывают, что электрические свойства многослойного графена чувствительны к отношениям между слоями и углу их поворота. Это открывает новые возможности для тонкой регулировки свойств двухслойного графена и его потенциального применения в отрасли.
При изучении различных структур графена учеными открываются новые горизонты для тонкой регулировки свойств этого электрического материала и его будущего применения. Безусловно, дорога к применению графена в различных отраслях еще долгая, но перспективы впечатляющие.
Для тех, кто не знает, графен — это кристаллический аллотроп углерода, представляющий собой плоский монослой из атомов углерода, которые образуют гексагональную решетку. Графен имеет уникальные физические свойства, такие как высокая прочность, гибкость и проводимость. Эти свойства делают его одним из наиболее перспективных материалов для производства электронных устройств будущего. Недавнее исследование МФТИ дополняет портфолио научных достижений в этом направлении и открывает новые горизонты для разработок в области электроники.
В ходе экспериментов, проведенных исследовательской группой МФТИ, было установлено, что квантовый туннельный тип проводимости доминирует в двуслойном графене. Это означает, что в отличие от традиционной проводимости, основывающейся на передаче электронов между атомами, в данном случае электроны «туннелируют» сквозь энергетические барьеры благодаря квантово-механическим эффектам. Такой механизм проводимости позволяет достигать значительно больших скоростей и эффективности, чем это возможно в традиционных материалах.

российские ученые сделали заключение о доминирующем квантовом туннельном типе проводимости в этом перспективном материале.
Простыми словами, квантовый туннельный тип проводимости позволяет зарядам преодолевать потенциальные барьеры, которые им мешают двигаться. Более того, этот метод позволяет получать очень высокую скорость передачи информации, что делает его особенно привлекательным для применения в электронике и технологиях, связанных с передачей данных.
Несмотря на преимущества, существует и ряд ограничений при использовании квантового туннельного типа проводимости. В частности, это связано с тем, что данный метод применим только для тех материалов, которые обладают определенными электрическими свойствами, а также требует специальных устройств для его реализации.
Тем не менее в целом квантовый туннельный тип проводимости представляет собой один из перспективных методов передачи зарядов, который имеет широкий спектр применения в современной электронике и технологиях полупроводников.
Открытие квантового туннельного типа проводимости в двуслойном графене — это гигантский шаг вперед в понимании природы этого материала и путей его применения. Следует отметить, что туннельный эффект в двухслойном графене позволяет детектировать не только излучения, но и следовые количества химических и биологических соединений, то есть выступать в роли чувствительного химического и биологического сенсора.
Возможности, открывшиеся в ходе исследования, представляют собой реальные перспективы разработки и создания нового поколения электронных устройств, включая более быстрые компьютеры, электронные схемы улучшенной энергоэффективности и автоматические системы обработки информации.
Очевидно, что внедрение новых технологий на основе квантового туннелирования в современный мир обещает впечатляющие инновации. Впрочем, до того, как внедрить результаты открытия, предстоит научиться решать ряд практических вопросов, связанных с новым материалом.
Получить качественные образцы двухслойного графена намного сложнее, чем однослойного, при этом электрические свойства двухслойного графена (например, подвижность) существенно зависят от качества и точности совмещения слоёв.
Для изучения свойств двухслойного графена учеными предпринимаются эксперименты с контролируемым поворотом слоев. Исследования показывают, что электрические свойства многослойного графена чувствительны к отношениям между слоями и углу их поворота. Это открывает новые возможности для тонкой регулировки свойств двухслойного графена и его потенциального применения в отрасли.
При изучении различных структур графена учеными открываются новые горизонты для тонкой регулировки свойств этого электрического материала и его будущего применения. Безусловно, дорога к применению графена в различных отраслях еще долгая, но перспективы впечатляющие.
- Евгения Бусина
- МФТИ
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Планшет, пролежавший в Темзе пять лет, помог раскрыть серию запутанных преступлений
Эксперты говорят: даже вода не смогла стереть цифровые следы....

Учёные говорят, что обнаружили огромный тайный город под египетскими пирамидами
Проверять пока не разрешили....

«Инопланетяне» на Земле? Древние 8-метровые «грибы» оказались совершенно неизвестной формой жизни
Вот уже 180 лет подряд живые «башни» ставят в тупик всю науку....

«Шерстистый дьявол» обнаружен в пустыне, на границе Мексики и США
Ученые говорят: такой уникальной находки не было последние полвека....

Похоже, что проблема космического мусора в скором времени будет решена раз и навсегда
Новая технология не только очистит космос, но и поможет спутникам работать втрое дольше....

Американские спецслужбы скрывают правду о самой древней из библейских реликвий?
Экстрасенс ЦРУ предупредил: Ковчег Завета убьет каждого, кто к нему прикоснется....

Почему мы не помним себя младенцами? Новое исследование дало ответы
Возможно, помним, но «ларчик» заперт....

Археологи ликуют: в Испании нашли рисунки, которые старше человечества!
200 000-летняя находка заставит пересмотреть учебники....

Астрофизики рассказали, почему Вселенная замедляется вопреки предсказаниям Эйнштейна
Если открытие DESI и ослабление темной энергии подтвердится, учебники придется переписать....

Ученые поражены: мыши, как спасатели, оживляют своих сородичей, попавших в беду
Открытие, от которого дрогнет даже самое черствое сердце....

Кислород устарел! Ученые нашли новый ключ к внеземной жизни
Гицеанические миры могут стать новой надеждой астрофизиков....

На 100 000 лет раньше людей: ученые рассказали, кто устроил первые похороны на планете
Загадочные карлики Homo naledi, чей мозг был размером с апельсин, оказались не глупее нас с вами....

Секретная мутация гена: оказалось, ее имеют все обитатели Марианской впадины
Поразительное открытие китайских ученых может изменить всю теорию эволюции....

10 лет за 48 часов: ИИ полностью переиграл ученых в поисках секрета супербактерий
Однако эксперты предупреждают: нейросети не только ускоряют науку, они запросто могут столкнуть нас в пропасть....

Ученый рассказал, как использовались загадочные артефакты из гробницы Тутанхамона
Это было как в фильме «Мумия»: «Фараон должен воскреснуть!»...

Гигантский айсберг скрывал древнюю живую экосистему
Губки и кораллы благоденствуют на обнажившемся морском дне в месте, ранее недоступном взгляду....