В Гонконге изобрели новаторское устройство для связи 6G
Будущее беспроводной связи совершит гигантский скачок с появлением беспроводной технологии шестого поколения, то есть 6G. Исследовательская группа из Городского университета Гонконга (CityU) изобрела новаторское перестраиваемое терагерцевое (ТГц) метаустройство, которое может контролировать направление излучения и зону покрытия терагерцевых лучей. Результаты опубликовали в журнале Science Advances («Научные достижения»).
На заглавной иллюстрации: два мета-устройства сверху предназначены для 2D-манипуляций. Одно внизу слева предназначено для тестирования, а то, что внизу справа, представляет собой метаповерхность триплетного метаустройства. Вращая метаповерхность, устройство может быстро направлять сигнал 6G только назначенному получателю, сводя к минимуму утечку электроэнергии и повышая конфиденциальность. Ожидается, что они обеспечат высокорегулируемое, направленное и безопасное средство для будущих систем связи 6G.
Потенциал технологии ТГц-диапазона не ограничен, поскольку у него большой спектр для поддержки сверхскоростной передачи данных на уровне 100 Гбит/с (гигабит в секунду) и даже Тбит/с (терабит в секунду) для беспроводной связи, что в сотни и тысячи раз превышает скорость передачи данных 5G.
Однако в обычных ТГц-системах используются громоздкие, тяжёлые диэлектрические линзы и отражатели, которые могут направлять волны только на стационарный передатчик или детектор или передавать их на один приёмник, расположенный в фиксированном положении или охватывающий ограниченную площадь. Это препятствует разработке будущих приложений 6G, которые требуют точного позиционирования и концентрированного сигнала.
Существующие громоздкие системы препятствуют применению 6G. Совместными усилиями двух исследовательских групп CityU, возглавляемых профессором Цай Дин-Пином, профессором кафедры электротехники, и профессором Чан Чи-Хоу, исполняющим обязанности проректора и директором Государственной лаборатории терагерцевых и миллиметровых волн (SKLTMW), были созданы новые настраиваемые метаустройства, которые могут полностью контролировать направление распространения и зону покрытия ТГц-луча.
— Цай Дин-Пин, профессор, эксперт в области метаповерхностей и фотоники.
Метаустройство состоит из двух или трёх вращающихся метаповерхностей, то есть искусственного тонколистового материала с субволновой толщиной. Матаповерхности работают как эффективные проекторы для управления фокусным пятном ТГц-лучей на двумерной плоскости или в трёхмерном пространстве. При диаметре 30 мм каждая метаповерхность имеет около 11 тыс. микроантенн, которые имеют размеры всего 0,25 мм х 0,25 мм и отличаются друг от друга.
Секрет успеха мета-устройства заключается в тщательном расчёте и проектировании каждой микроантенны, пояснил профессор Цай. Простым вращением метаповерхностей без дополнительных требований к пространству фокус ТГц-луча может быть отрегулирован и направлен соответственно на указанные координаты X, Y и Z пункта назначения.
С помощью высокоточного и современного оборудования в SKLTMW исследовательская группа провела эксперименты и убедилась, что два вида разработанных ими метаустройств с переменным фокусным расстоянием — дублетные и триплетные метаустройства — могут проецировать пятно фокусировки ТГц-волны в произвольное пятно на 2D-плоскости и в 3D-пространстве соответственно с высокой точностью.

Инновационная разработка показала способность метаустройства направлять сигнал 6G в определённое место в двух- и трёхмерном пространстве. Поскольку сигнал может принимать только пользователь или детектор в определённом месте, а высококонцентрированный сигнал можно гибко переключать на других пользователей или детекторы, не тратя энергию на близлежащие приёмники или не нарушая конфиденциальность, метаустройство может повысить направленность, безопасность и гибкость будущих коммуникаций 6G при меньшем потреблении энергии.
Метаповерхности изготавливаются с использованием высокотемпературной смолы и метода 3D-печати, разработанного командой учёных. Они лёгкие и небольшие, и их можно легко производить в больших масштабах при низких затратах.
Ожидается, что новое терагерцевое настраиваемое метаустройство будет иметь большой потенциал для применения в системах связи 6G, включая беспроводную передачу энергии, масштабирование изображений и дистанционное зондирование. Исследовательская группа планирует разработать дополнительные приложения для метаустройств на основе терагерцевой варифокальной визуализации.
На заглавной иллюстрации: два мета-устройства сверху предназначены для 2D-манипуляций. Одно внизу слева предназначено для тестирования, а то, что внизу справа, представляет собой метаповерхность триплетного метаустройства. Вращая метаповерхность, устройство может быстро направлять сигнал 6G только назначенному получателю, сводя к минимуму утечку электроэнергии и повышая конфиденциальность. Ожидается, что они обеспечат высокорегулируемое, направленное и безопасное средство для будущих систем связи 6G.
Потенциал технологии ТГц-диапазона не ограничен, поскольку у него большой спектр для поддержки сверхскоростной передачи данных на уровне 100 Гбит/с (гигабит в секунду) и даже Тбит/с (терабит в секунду) для беспроводной связи, что в сотни и тысячи раз превышает скорость передачи данных 5G.
Однако в обычных ТГц-системах используются громоздкие, тяжёлые диэлектрические линзы и отражатели, которые могут направлять волны только на стационарный передатчик или детектор или передавать их на один приёмник, расположенный в фиксированном положении или охватывающий ограниченную площадь. Это препятствует разработке будущих приложений 6G, которые требуют точного позиционирования и концентрированного сигнала.
Существующие громоздкие системы препятствуют применению 6G. Совместными усилиями двух исследовательских групп CityU, возглавляемых профессором Цай Дин-Пином, профессором кафедры электротехники, и профессором Чан Чи-Хоу, исполняющим обязанности проректора и директором Государственной лаборатории терагерцевых и миллиметровых волн (SKLTMW), были созданы новые настраиваемые метаустройства, которые могут полностью контролировать направление распространения и зону покрытия ТГц-луча.
Появление настраиваемого терагерцевого метаустройства открывает захватывающие перспективы для систем связи 6G. Наше метаустройство позволяет передавать сигнал конкретным пользователям или детекторам и обладает гибкостью для настройки направления распространения по мере необходимости
— Цай Дин-Пин, профессор, эксперт в области метаповерхностей и фотоники.
Метаустройство состоит из двух или трёх вращающихся метаповерхностей, то есть искусственного тонколистового материала с субволновой толщиной. Матаповерхности работают как эффективные проекторы для управления фокусным пятном ТГц-лучей на двумерной плоскости или в трёхмерном пространстве. При диаметре 30 мм каждая метаповерхность имеет около 11 тыс. микроантенн, которые имеют размеры всего 0,25 мм х 0,25 мм и отличаются друг от друга.
Секрет успеха мета-устройства заключается в тщательном расчёте и проектировании каждой микроантенны, пояснил профессор Цай. Простым вращением метаповерхностей без дополнительных требований к пространству фокус ТГц-луча может быть отрегулирован и направлен соответственно на указанные координаты X, Y и Z пункта назначения.
С помощью высокоточного и современного оборудования в SKLTMW исследовательская группа провела эксперименты и убедилась, что два вида разработанных ими метаустройств с переменным фокусным расстоянием — дублетные и триплетные метаустройства — могут проецировать пятно фокусировки ТГц-волны в произвольное пятно на 2D-плоскости и в 3D-пространстве соответственно с высокой точностью.

Инновационная разработка показала способность метаустройства направлять сигнал 6G в определённое место в двух- и трёхмерном пространстве. Поскольку сигнал может принимать только пользователь или детектор в определённом месте, а высококонцентрированный сигнал можно гибко переключать на других пользователей или детекторы, не тратя энергию на близлежащие приёмники или не нарушая конфиденциальность, метаустройство может повысить направленность, безопасность и гибкость будущих коммуникаций 6G при меньшем потреблении энергии.
Метаповерхности изготавливаются с использованием высокотемпературной смолы и метода 3D-печати, разработанного командой учёных. Они лёгкие и небольшие, и их можно легко производить в больших масштабах при низких затратах.
Ожидается, что новое терагерцевое настраиваемое метаустройство будет иметь большой потенциал для применения в системах связи 6G, включая беспроводную передачу энергии, масштабирование изображений и дистанционное зондирование. Исследовательская группа планирует разработать дополнительные приложения для метаустройств на основе терагерцевой варифокальной визуализации.
- Дмитрий Ладыгин
- techxplore.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Эксперты говорят: изобретение ученых из Перми решает одну из самых серьезных и опасных проблем в современной авиации
Американцы потратили на это десятки лет и миллиарды долларов, но открытие сделали в России...
ДНК из ниоткуда: 6000-летние останки в Колумбии ни с кем совпадают по генам. Вообще.
Если у этих людей нет ни предков, ни потомков, то кто они такие?...
Египетская «Зона 51»: Почему власти полностью засекретили «четвертую пирамиду»?
С 60-х годов ХХ века на объект Завиет-эль-Эриан не попал ни один ученый. Что скрывают военные за колючей проволокой?...
Секретные спутники Илона Маска заподозрили в использовании запрещенных сигналов
Что это значит для России и чем могут ответить наши военные?...
Ученые обнаружили на Кавказе «ужасного» хищника, способного дробить черепа с одного укуса
Почему же 400-килограммовый монстр, побеждавший медведей и саблезубых тигров, все-таки исчез с лица планеты?...
«Черный ящик» раскрыл тайну летучей мыши, пожирающей птиц прямо в полете
Ученые совершенно не ожидали, что рукокрылый властелин ночного неба по свирепости и охотничьему мастерству даст фору даже соколам...
2700 дней понадобилось ученым, чтобы, наконец, раскрыть главную тайну гигантских скатов
Оказалось, что манты ныряют на 1250-метровую глубину вовсе не за едой и не спасаясь от хищников...
Нападение акул, считавшихся абсолютно безобидными, вызвало шок у морских биологов
Кто виноват в этой ужасной трагедии? И почему эксперты говорят, что это только начало?...
В ближайшие 100 лет Юпитер «выстрелит» в Землю как минимум 342 раза
Российские ученые рассчитали: ближайшее «прицеливание» состоится уже 2031 году. Что вообще нам ожидать?...
Мог ли великий художник Клод Моне видеть в ультрафиолетовом спектре, как пчела?
Историки уверены: после операции на глазах с французским живописцем стали происходит очень странные вещи...
Ученые говорят: вся жизнь подчиняется одному секретному коду
Но почему это древнее ископаемое отказалось следовать ему?...
Затонувшие корабли с сокровищами у берегов Китая открывают поразительные факты о Великом морском шелковом пути
Да, это лонгрид! Но после его прочтения ваш взгляд на историю Китая изменится самым коренным образом...
Активность нечеловеческого разума вблизи ядерных объектов США, СССР и Великобритании впервые получила научные доказательства
Критики не смогли опровергнуть работу шведских ученых о странных искусственных аномалиях на орбите...