Meta разрабатывает языковой бот с искусственным интеллектом, который может использовать внешние программные инструменты
Языковые модели, такие как ChatGPT, произвели революцию в области обработки естественного языка, но они по-прежнему сталкиваются с некоторыми проблемами, в таких базовых операциях как арифметика или проверка фактов в генерируемом тексте. В прошлый четверг исследователи из Meta представили Toolformer, языковую модель ИИ, которая использует внешние инструменты, такие как поисковые системы, калькуляторы и календари, не жертвуя при этом своими базовыми возможностями языкового моделирования.
Ключевой особенностью Toolformer является то, что он может использовать API (интерфейсы прикладного программирования), представленные в виде набора протоколов, которые позволяют различным приложениям взаимодействовать друг с другом, часто бесшовным и автоматизированным образом. Во время обучения исследователи предоставили Toolformer небольшой набор написанных человеком примеров, демонстрирующих использование каждого API, а затем позволили аннотировать большой набор данных языкового моделирования потенциальными вызовами API. Нейросеть справилась с задачей в режиме «самоконтроля», что означает, что она может учиться, не нуждаясь в постоянном руководстве человека.
Модель научилась взаимодействовать с каждой командой вызова API, как если бы они были любой другой формой текста. В результате, во время работы — генерации текста в ответ на ввод пользователем запроса — он может вставлять вызовы внешних приложений, когда это необходимо. Более того, Toolformer может самостоятельно «решать», какой инструмент использовать в соответствующем контексте и как именно использовать результат работы внешнего приложения.
Модели больших языков (LLM) хорошо известны тем, что не особенно хороши в арифметике. Toolformer теперь может обойти это ограничение с помощью программы-калькулятора. Или, если вам необходимо, чтобы помощник на основе LLM добавил дату в свой календарь, Toolformer мог бы справиться с этой задачей, используя ссылку API на приложение календаря.
Toolformer основан на предварительно обученной модели GPT-J с 6,7 миллиарда параметров. Эксперименты, проведенные исследователями на различных задачах с использованием инструментов показали, что Toolformer обеспечивает гораздо более высокую производительность, чем более крупная модель GPT-3, которая содержит 175 миллиардов параметров.
Исследователи не в первый раз пытаются компенсировать ограничения языковых моделей. Фактически, недавняя модель Bing Chat может выполнять поиск в Интернете самостоятельно, когда это необходимо, а некоторые другие системы уже пытались интегрироваться с браузерами, калькуляторами и поисковыми системами. Однако, по словам исследователей из Meta, большинство существующих подходов к интеграции инструментов в языковые модели основывались на большом количестве человеческих аннотаций или были ограничены конкретными настройками для конкретных задач. В отличие от этого, Toolformer будет использовать ряд инструментов в обобщенном виде, что не требует специальной подготовки с участием человека для выполнения конкретных задач.
Ключевой особенностью Toolformer является то, что он может использовать API (интерфейсы прикладного программирования), представленные в виде набора протоколов, которые позволяют различным приложениям взаимодействовать друг с другом, часто бесшовным и автоматизированным образом. Во время обучения исследователи предоставили Toolformer небольшой набор написанных человеком примеров, демонстрирующих использование каждого API, а затем позволили аннотировать большой набор данных языкового моделирования потенциальными вызовами API. Нейросеть справилась с задачей в режиме «самоконтроля», что означает, что она может учиться, не нуждаясь в постоянном руководстве человека.
Модель научилась взаимодействовать с каждой командой вызова API, как если бы они были любой другой формой текста. В результате, во время работы — генерации текста в ответ на ввод пользователем запроса — он может вставлять вызовы внешних приложений, когда это необходимо. Более того, Toolformer может самостоятельно «решать», какой инструмент использовать в соответствующем контексте и как именно использовать результат работы внешнего приложения.
Модели больших языков (LLM) хорошо известны тем, что не особенно хороши в арифметике. Toolformer теперь может обойти это ограничение с помощью программы-калькулятора. Или, если вам необходимо, чтобы помощник на основе LLM добавил дату в свой календарь, Toolformer мог бы справиться с этой задачей, используя ссылку API на приложение календаря.
Toolformer основан на предварительно обученной модели GPT-J с 6,7 миллиарда параметров. Эксперименты, проведенные исследователями на различных задачах с использованием инструментов показали, что Toolformer обеспечивает гораздо более высокую производительность, чем более крупная модель GPT-3, которая содержит 175 миллиардов параметров.
Исследователи не в первый раз пытаются компенсировать ограничения языковых моделей. Фактически, недавняя модель Bing Chat может выполнять поиск в Интернете самостоятельно, когда это необходимо, а некоторые другие системы уже пытались интегрироваться с браузерами, калькуляторами и поисковыми системами. Однако, по словам исследователей из Meta, большинство существующих подходов к интеграции инструментов в языковые модели основывались на большом количестве человеческих аннотаций или были ограничены конкретными настройками для конкретных задач. В отличие от этого, Toolformer будет использовать ряд инструментов в обобщенном виде, что не требует специальной подготовки с участием человека для выполнения конкретных задач.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Новое исследование показало: Стоунхендж столетиями «водил за нос». Похоже, историю опять придется переписывать
Оказалось, что сенсация скрывалась в огромном круге, состоящем из загадочных шахт...
Людовик XIV умер совсем не от гангрены: ученые сумели раскрыть истину лишь 310 лет спустя
Эксперты говорят: французский король был обречен. Медикам того времени была совершенно неизвестна его болезнь...
Необъяснимые аномалии в тайге на Дальнем Востоке: читаем походные дневники военного разведчика и писателя Владимира Арсеньева
Часть первая: свет в ночном море, мираж «фата-моргана» и почти моментальное замерзание воды...
ЦРУ, море в пустыне и нефть: кто и зачем остановил проект Египта на 60 лет?
Часть вторая: Холодная война, 200 ядерных взрывов и 15 миллиардов, которые могут все изменить...
Меньше трех дней до конца света на орбите: почему программа CRASH Clock бьет тревогу?
Сотрудники Маска уверяют, что у них все под контролем. Но эксперты сравнивают орбиту с карточным домиком. Кто же прав?...
Парадокс Великой Зеленой стены: Китай посадил 78 миллиардов новых деревьев, но климат стал только хуже. Как так вышло?
Ученые назвали причины, почему самый грандиозный экологический проект за всю историю в итоге обернулся головной болью для миллионов китайских граждан...
Что стоит за таинственными аномалиями в дальневосточной тайге? Продолжаем читать походные дневники военного разведчика и писателя Владимира Арсеньева
Часть вторая: снежная гроза, феномен моретрясения и встреча со «снежным человеком»...
Египет хотел создать МОРЕ в пустыне Сахара: почему проект заморозили на 60 лет?
Часть первая: Реальный шанс спастись от всемирного потопа...
Российский ученый уверен, что максимально приблизился к разгадке тайны шаровой молнии
Похоже, наука ошибалась: это не плазменный сгусток, а «живой кристалл» из частиц-призраков...
Темная сторона Рима: выяснилось, что Империя веками «выкачивала» здоровье из покоренных народов
Новые находки заставили ученых признать: для простых людей римский «прогресс» был скорее приговором, чем спасением. Но почему же так вышло?...
Встречи с неведомым: завершаем чтение дневников разведчика и писателя Владимира Арсеньева
Часть третья: таинственный огонь в лесу, свет из облаков, призрак в тумане и странный дым на море...
Загадочная письменность Б из пещер у Мертвого моря наконец-то расшифрована
Ученые «ломали» древний шифр эпохи Христа более 70 лет, но результат разочаровал многих. Почему?...
Первая «чернокожая британка» оказалась белой: новое исследование заставило историков полностью пересмотреть портрет женщины из Бичи-Хед
Почему ученые так сильно ошиблись с ее внешностью? И стоит ли после этого доверять реконструкциям по ДНК?...