Российская разработка может предсказать ещё не озвученное слово
Исследователи из НИУ ВШЭ и Московского государственного медико-стоматологического университета разработали модель машинного обучения, которая может предсказать слово, которое собирается произнести испытуемый. Система действует на основе нейронной активности, записанной с помощью минимального количества вставленных в мозг электродов.
Статью «Декодирование речи с помощью небольшого набора пространственно разделённых минимально инвазивных внутричерепных электродов ЭЭГ с компактной и интерпретируемой нейронной сетью» опубликовали в «Журнале нейронной инженерии» (Journal of Neural Engineering). Исследование финансировалось за счёт гранта Правительства Российской Федерации в рамках национального проекта «Наука и университеты».
Миллионы людей во всем мире страдают от нарушений речи. Причины потери речи могут быть разными, например, инсульт или врождённые заболевания. Сегодня доступны технологии для восстановления коммуникативной функции таких пациентов, в том числе интерфейсы «беззвучной речи». Такие способы распознают речь, отслеживая движение артикуляционных мышц, когда человек произносит слова, не издавая ни звука. Однако такие устройства помогают некоторым пациентам, но не тем, у кого, например, паралич лицевых мышц.
Речевые нейропротезы — интерфейсы мозг-компьютер, способные декодировать речь на основе активности мозга, — могут обеспечить таким пациентам доступное и надёжное решение для восстановления общения. В отличие от персональных компьютеров, устройства с интерфейсом мозг-компьютер (ИМК) управляются непосредственно мозгом без необходимости использования клавиатуры или микрофона. Однако эта технология требует серьёзного вмешательства по имплантации электродов в ткани головного мозга. Тем более, наиболее точное распознавание речи достигается с помощью нейропротезов с электродами, покрывающими большую площадь кортикальной поверхности. К тому же решения для считывания мозговой активности не предназначены для длительного использования и представляют значительный риск для пациентов.
Исследователи Центра биоэлектрических интерфейсов НИУ ВШЭ и Московского государственного медико-стоматологического университета изучили возможность создания функционирующего нейропротеза, способного декодировать речь с приемлемой точностью путём считывания активности мозга с небольшого набора электродов, которые имплантировали в ограниченную область коры головного мозга. Авторы предполагают, что в будущем эта минимально инвазивная процедура может даже выполняться под местной анестезией. В опубликованном исследовании учёные собрали данные о двух пациентах с эпилепсией, которым ранее с другой целью вживили внутричерепные электроды — чтобы выявить зоны, в которых возникают приступы.
У первого пациента имплантировали с двух сторон в общей сложности пять стержней стереоэлектроэнцефалографии (sEEG) с шестью контактами в каждом. А второму пациенту вживили девять электрокортикографических (ECoG) полосок с восемью контактами в каждой. В отличие от ECoG, электроды для sEEG могут быть имплантированы без полной трепанации через отверстие в черепе. В этом исследовании для декодирования нейронной активности использовались только шесть контактов одного стержня sEEG у одного пациента и восемь контактов одной полоски ECoG у другого.
Испытуемых попросили прочитать вслух шесть предложений, каждое из которых повторялось от 30 до 60 раз в случайном порядке. Предложения различались по структуре, и большинство слов в одном предложении начинались с одной и той же буквы. Предложения содержали в общей сложности 26 различных слов. Пока испытуемые читали, электроды регистрировали их мозговую активность.
Затем эти данные сопоставили со звуковыми сигналами, чтобы сформировать 27 фрагментов звучания, включая 26 слов и один фрагмент тишины. Полученный обучающий набор данных содержал сигналы, записанные в первые 40 минут эксперимента. Его передали в модель машинного обучения с архитектурой, основанной на нейронных сетях. Задача обучения для нейронной сети состояла в том, чтобы предсказать следующее произнесенное слово (фрагмент) на основе данных нейронной активности, предшествующих произнесению.
Разрабатывая архитектуру нейронной сети, исследователи хотели сделать её простой, компактной и легко интерпретируемой. Они разработали двухэтапную архитектуру, которая сначала извлекала внутренние речевые представления из записанных данных мозговой активности, производя логарифмические спектральные коэффициенты, а затем предсказывала конкретный фрагмент, то есть слово или молчание.
Обученная таким образом нейронная сеть достигла точности в 55%, используя только шесть каналов данных, записанных одним электродом sEEG у первого пациента, и 70% точности, используя только восемь каналов данных, записанных одной полосой ECoG у второго пациента. Достигнутые результаты сопоставимы с точностью, полученной в других исследованиях с использованием устройств, которые требовали имплантации электродов по всей поверхности коры головного мозга.
Настроенная интерпретируемая модель позволяет объяснить в нейрофизиологических терминах, какая нейронная информация вносит наибольший вклад в предсказание слова, которое должно быть произнесено. Исследователи изучили сигналы, поступающие от разных групп нейронов, чтобы определить, какие из них были ключевыми для последующей задачи. Результаты согласуются с результатами отображения речи. В основе — предположение, что модель использует нейронные сигналы, которые являются ключевыми, и поэтому могут быть использованы для декодирования воображаемой речи.
Ещё одно преимущество этого решения — оно не требует построения функций вручную. Модель научилась извлекать речевые представления непосредственно из данных о мозговой активности. Интерпретируемость результатов также указывает на то, что сеть декодирует сигналы от мозга, а не от какой-либо сопутствующей активности, такой как электрические сигналы от артикуляционных мышц или возникающие из-за эффекта микрофона.
Исследователи подчёркивают, что прогноз всегда основывался на данных нейронной активности, предшествующих высказыванию. Они уверены в гарантии того, что правило принятия решений не использовало реакцию слуховой коры на уже произнесённую речь.
— Алексей Осадчий, ведущий автор исследования, директор Центра биоэлектрических интерфейсов Института когнитивной нейронауки НИУ ВШЭ.
Статью «Декодирование речи с помощью небольшого набора пространственно разделённых минимально инвазивных внутричерепных электродов ЭЭГ с компактной и интерпретируемой нейронной сетью» опубликовали в «Журнале нейронной инженерии» (Journal of Neural Engineering). Исследование финансировалось за счёт гранта Правительства Российской Федерации в рамках национального проекта «Наука и университеты».
Миллионы людей во всем мире страдают от нарушений речи. Причины потери речи могут быть разными, например, инсульт или врождённые заболевания. Сегодня доступны технологии для восстановления коммуникативной функции таких пациентов, в том числе интерфейсы «беззвучной речи». Такие способы распознают речь, отслеживая движение артикуляционных мышц, когда человек произносит слова, не издавая ни звука. Однако такие устройства помогают некоторым пациентам, но не тем, у кого, например, паралич лицевых мышц.
Речевые нейропротезы — интерфейсы мозг-компьютер, способные декодировать речь на основе активности мозга, — могут обеспечить таким пациентам доступное и надёжное решение для восстановления общения. В отличие от персональных компьютеров, устройства с интерфейсом мозг-компьютер (ИМК) управляются непосредственно мозгом без необходимости использования клавиатуры или микрофона. Однако эта технология требует серьёзного вмешательства по имплантации электродов в ткани головного мозга. Тем более, наиболее точное распознавание речи достигается с помощью нейропротезов с электродами, покрывающими большую площадь кортикальной поверхности. К тому же решения для считывания мозговой активности не предназначены для длительного использования и представляют значительный риск для пациентов.
Исследователи Центра биоэлектрических интерфейсов НИУ ВШЭ и Московского государственного медико-стоматологического университета изучили возможность создания функционирующего нейропротеза, способного декодировать речь с приемлемой точностью путём считывания активности мозга с небольшого набора электродов, которые имплантировали в ограниченную область коры головного мозга. Авторы предполагают, что в будущем эта минимально инвазивная процедура может даже выполняться под местной анестезией. В опубликованном исследовании учёные собрали данные о двух пациентах с эпилепсией, которым ранее с другой целью вживили внутричерепные электроды — чтобы выявить зоны, в которых возникают приступы.
У первого пациента имплантировали с двух сторон в общей сложности пять стержней стереоэлектроэнцефалографии (sEEG) с шестью контактами в каждом. А второму пациенту вживили девять электрокортикографических (ECoG) полосок с восемью контактами в каждой. В отличие от ECoG, электроды для sEEG могут быть имплантированы без полной трепанации через отверстие в черепе. В этом исследовании для декодирования нейронной активности использовались только шесть контактов одного стержня sEEG у одного пациента и восемь контактов одной полоски ECoG у другого.
Испытуемых попросили прочитать вслух шесть предложений, каждое из которых повторялось от 30 до 60 раз в случайном порядке. Предложения различались по структуре, и большинство слов в одном предложении начинались с одной и той же буквы. Предложения содержали в общей сложности 26 различных слов. Пока испытуемые читали, электроды регистрировали их мозговую активность.
Затем эти данные сопоставили со звуковыми сигналами, чтобы сформировать 27 фрагментов звучания, включая 26 слов и один фрагмент тишины. Полученный обучающий набор данных содержал сигналы, записанные в первые 40 минут эксперимента. Его передали в модель машинного обучения с архитектурой, основанной на нейронных сетях. Задача обучения для нейронной сети состояла в том, чтобы предсказать следующее произнесенное слово (фрагмент) на основе данных нейронной активности, предшествующих произнесению.
Разрабатывая архитектуру нейронной сети, исследователи хотели сделать её простой, компактной и легко интерпретируемой. Они разработали двухэтапную архитектуру, которая сначала извлекала внутренние речевые представления из записанных данных мозговой активности, производя логарифмические спектральные коэффициенты, а затем предсказывала конкретный фрагмент, то есть слово или молчание.
Обученная таким образом нейронная сеть достигла точности в 55%, используя только шесть каналов данных, записанных одним электродом sEEG у первого пациента, и 70% точности, используя только восемь каналов данных, записанных одной полосой ECoG у второго пациента. Достигнутые результаты сопоставимы с точностью, полученной в других исследованиях с использованием устройств, которые требовали имплантации электродов по всей поверхности коры головного мозга.
Настроенная интерпретируемая модель позволяет объяснить в нейрофизиологических терминах, какая нейронная информация вносит наибольший вклад в предсказание слова, которое должно быть произнесено. Исследователи изучили сигналы, поступающие от разных групп нейронов, чтобы определить, какие из них были ключевыми для последующей задачи. Результаты согласуются с результатами отображения речи. В основе — предположение, что модель использует нейронные сигналы, которые являются ключевыми, и поэтому могут быть использованы для декодирования воображаемой речи.
Ещё одно преимущество этого решения — оно не требует построения функций вручную. Модель научилась извлекать речевые представления непосредственно из данных о мозговой активности. Интерпретируемость результатов также указывает на то, что сеть декодирует сигналы от мозга, а не от какой-либо сопутствующей активности, такой как электрические сигналы от артикуляционных мышц или возникающие из-за эффекта микрофона.
Исследователи подчёркивают, что прогноз всегда основывался на данных нейронной активности, предшествующих высказыванию. Они уверены в гарантии того, что правило принятия решений не использовало реакцию слуховой коры на уже произнесённую речь.
Использование таких интерфейсов сопряжено с минимальными рисками для пациента. Если всё получится, то, возможно, удастся расшифровать воображаемую речь по нейронной активности, регистрируемой небольшим количеством минимально инвазивных электродов, имплантированных в амбулаторных условиях под местной анестезией
— Алексей Осадчий, ведущий автор исследования, директор Центра биоэлектрических интерфейсов Института когнитивной нейронауки НИУ ВШЭ.
- Дмитрий Ладыгин
- pexels.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Главная тайна Черного моря разгадана: Ученые рассказали, почему там на дне очень прозрачная пресная вода
Чтобы найти ответ, исследователям пришлось заглянуть на 8 тысяч лет назад...
Секрет 14-го моря России: куда оно пропало и почему о нем снова заговорили?
Эксперты напоминают: Кроме Печорского, у России есть и 15-е «забытое» море, и оно тоже возвращается на карты...
Мегамонстры с 7-го этажа: в древних океанах шла такая война хищников, где у современных косаток не было бы ни единого шанса
Ученые рассказали, куда исчезли «боги» мезозойских морей и почему сейчас их существование было бы невозможно...
Мощнее леса в десятки раз: в ЮАР нашли «живые камни», которые выкачивают CO₂ с бешеной скоростью
Микробиалиты могли бы спасти Землю от потепления, но у этих «каменных насосов» есть один нюанс...
Супертелескоп James Webb только запутал ученых, а планета-«близнец» Земли стала еще загадочнее
Эксперты рассказали, почему самый мощный телескоп в истории не смог разобраться с атмосферой TRAPPIST-1e. Аппарат не виноват. Но тогда кто?...
Грядет научный прорыв: Зачем в последние годы ученые по всему миру создают очень странные компьютеры?
Новые аппараты… не просто живые: они стирают различия между ЭВМ и человеческим мозгом...
Новое исследование показало: если бы не этот «российский ген», древние люди вряд ли бы заселили Америку
Ученые рассказали, почему Алтай в ДНК — это главный секрет феноменального здоровья индейцев...
Золотой колокольчик из Эрмитажа: почему Владимир Путин запретил выставлять этот артефакт за границей?
Сколько сокровищ потеряла Россия в последнее время, пока не поняла, что договоры с Западом не стоят даже бумаги, на которой написаны?...
3500-летние рисунки на камнях российского острова Вайгач грозят переписать древнюю историю Арктики
Ученые рассказали, кем были мореходы из забытой цивилизации Русского Севера...
20-летнее наблюдение со спутников «сломало климат»: Теперь ученым придется полностью менять все теории
Зато теперь понятно, почему в двух близких городах могут быть... разные времена года...
Она нам больше не праматерь! Почему легендарную Люси могут «изгнать» из числа наших предков?
Ведущие антропологи мира схлестнулись в настоящей войне. Кто же окажется победителем?...
Американский авиалайнер резко рухнул на 7000 метров: эксперты считают виновником сбоя космические лучи из глубин Галактики
В этот раз катастрофа не произошла, но под угрозой электроника самолетов, космических аппаратов и даже автомобилей. Почему так происходит?...
Ученые рассказали, какой фрукт подчинил себе весь Китай
Как продукт с очень специфическим запахом стал управлять дипломатией и экономикой Юго-Восточной Азии?...