В России нашли способ эффективнее получать мощное лазерное излучение
Сотрудники Физико-технического института имени Иоффе (ФТИ), Санкт-Петербург, нашли способ эффективнее получать мощное лазерное излучение. Оно необходимо, например, для развития беспилотного транспорта, сообщили РИА «Новости» в Министерстве науки и высшего образования РФ.
В последние годы активно создаются транспортные беспилотники. Однако они могут работать благодаря лазерным лидарам. Эти устройства измеряют расстояния с помощью замера времени возвращения отражённых лазерных лучей на приёмник.
Главная трудность — в правильной генерации излучения. Чтобы фиксировать объект за сотни метров при любой погоде и обеспечить безопасное движение, нужны источники излучения с большой мощностью и яркостью. Но импульсы излучения при этом должны быть очень короткими — в наносекунды. Сейчас в лидарах применяются волоконные и твердотельные лазеры. Однако им требуется дополнительный этап передачи энергии от внешнего источника на лазер, такие устройства считаются недостаточно эффективными.
Завлабораторией полупроводниковых лазерных диодов ФТИ Сергей Слипченко рассказал, что учёные предложили альтернативу. Их идея позволяет избавиться от лишнего звена в цепочке преобразования энергии источника питания в энергию лазерного излучения.
На первом этапе учёные ФТИ провели теоретическую работу: рассчитали процессы взаимодействия носителей тока и света в лабораторных гетероструктурах и кристаллах мощных полупроводниковых лазеров.
Новые, оптимизированные слои гетероструктур, состоящие из разных составов, сделали энергетические потери минимальными. Кроме того, учёным удалось создать технологию так называемой селективной эпитаксии для мощных лазеров, когда гетероструктуры можно выращивать на специально подготовленной подложке.
В результате КПД мощных полупроводниковых лазеров превысил 70%, что вдвое эффективнее, чем в случае с твердотельными и волоконными лазерами. Также исследователям удалось получить лазерные импульсы длительностью 100 наносекунд с пиковой мощностью более 1 киловатт с поверхности в доли квадратных сантиметров.
Исследования прошли при финансовой поддержке Российского научного фонда. Следующим этапом работы станет повышение спектральной яркости лазеров.
В последние годы активно создаются транспортные беспилотники. Однако они могут работать благодаря лазерным лидарам. Эти устройства измеряют расстояния с помощью замера времени возвращения отражённых лазерных лучей на приёмник.
Главная трудность — в правильной генерации излучения. Чтобы фиксировать объект за сотни метров при любой погоде и обеспечить безопасное движение, нужны источники излучения с большой мощностью и яркостью. Но импульсы излучения при этом должны быть очень короткими — в наносекунды. Сейчас в лидарах применяются волоконные и твердотельные лазеры. Однако им требуется дополнительный этап передачи энергии от внешнего источника на лазер, такие устройства считаются недостаточно эффективными.
Завлабораторией полупроводниковых лазерных диодов ФТИ Сергей Слипченко рассказал, что учёные предложили альтернативу. Их идея позволяет избавиться от лишнего звена в цепочке преобразования энергии источника питания в энергию лазерного излучения.
На первом этапе учёные ФТИ провели теоретическую работу: рассчитали процессы взаимодействия носителей тока и света в лабораторных гетероструктурах и кристаллах мощных полупроводниковых лазеров.
Новые, оптимизированные слои гетероструктур, состоящие из разных составов, сделали энергетические потери минимальными. Кроме того, учёным удалось создать технологию так называемой селективной эпитаксии для мощных лазеров, когда гетероструктуры можно выращивать на специально подготовленной подложке.
В результате КПД мощных полупроводниковых лазеров превысил 70%, что вдвое эффективнее, чем в случае с твердотельными и волоконными лазерами. Также исследователям удалось получить лазерные импульсы длительностью 100 наносекунд с пиковой мощностью более 1 киловатт с поверхности в доли квадратных сантиметров.
Исследования прошли при финансовой поддержке Российского научного фонда. Следующим этапом работы станет повышение спектральной яркости лазеров.
- Дмитрий Ладыгин
- pexels.com/photo/260034/
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Загадочный взрыв над Москвой: зачем NASA срочно удалило все данные об объекте 2025 US6?
И почему эксперты говорят, что мы никогда не узнаем правды?...
В России обнаружена рыба, которая 70 лет считалась полностью вымершей
И не единственная такая сенсация в нашей стране за последние годы...
Российские ученые создали уникальный материал будущего: новый металл прочнее любой стали, но дешевле даже алюминия
Мир высоких технологий ждал этого открытия десятилетия. Наша страна получила реальный шанс стать лидером металлургии...
«Парящие» берлоги: Как треугольные дома помогут России удержать Арктику
Кто победит? Глобальное изменение климата или новые технологии?...
1300 лет назад неизвестные грабители вскрыли гробницу знатного воина, но вообще не тронули сокровищ. Почему?
Венгерские археологи уверены, что разгадали этот мистический детектив. Но так ли это на самом деле?...
Россия снова первая: в космосе вырастили идеальные кристаллы!
Рассказываем, почему проект «Экран-М» может стать началом новой эры полупроводников, где Россия будет ведущей в мире...
Тающий лед Антарктиды прячет от нас глубинную «бомбу» замедленного действия
Неожиданный климатический парадокс: малая беда хранит человечество от большой. Но это ненадолго...
Какие тайны скрывает 40 000-летний... карандаш, найденный в одной из пещер Крыма?
И почему ученые уверены, что эта находка заставляет в корне пересмотреть древнейшую историю человечества?...
Тайна изумрудной мумии, не дававшей покоя ученым 38 лет, наконец-то разгадана!
Ученые признаются: они не ожидали, что им придется раскрыть самый настоящий химический детектив...
Эксперимент показал, что на самом деле творится под марсианскими дюнами каждую весну
Оказалось, что с наступлением тепла на Красной планете активизируются... ледяные «кроты»...
Ученые из Хьюстона рассказали, почему Земля и другие планеты умудрились не сгореть в недрах молодого Солнца
Как оказалось, Солнечную систему в буквальном смысле спас Юпитер, который решительно выступил против гравитационного диктата звезды...
«Инопланетный зонд», который преследует Землю, был сделан… в СССР?
Почему известный гарвардский астроном выдвинул именно эту версию?...