Плохие машинные переводы засоряют Интернет
Ближе к концу прошлого века Билл Гейтс увидел перспективу объединения граждан почти 200 стран, говорящих на более чем 7000 языках, для общего диалога через внезапно растущее интернет-сообщество.
Еще в конце прошлого века Гейтс заявил о глобальных перспективах взаимодействия людей в сети. Он предполагал, что интернет будет способен объединить разноязычных пользователей из 200 стран по всему миру для открытого и беспрепятственного диалога.
— одна из ранних цитат Билла Гейтса о еще только развивающейся глобальной сети.
Безусловно, сейчас мы видим, что он оказался прав. Интернет стал самым популярным местом для обмена информацией и остается практически безальтернативной технологией коммуникации для людей по всему миру. Однако недавнее исследование открыло негативную сторону упрощения коммуникации между пользователями.
Ученые из лаборатории искусственного интеллекта Amazon Web Services и Калифорнийского университета в Санта-Барбаре изучив более 6 миллиардов предложений в интернете пришли к выводу, что около половины из их количества были переведены единожды или дважды с различных языков. При этом, как правило, качество перевода оставляло желать лучшего, а с каждым последующим только ухудшалось. По данным исследователей некоторые тексты были переведены около восьми или девяти раз, что иногда полностью меняло их изначальный смысл.
Исследование под названием «Шокирующее количество машинных переводов в сети: выводы о многопоточном параллелизме» было опубликовано в открытом доступе на сервисе arXiv 11 января.
— из текста работы.
Работа говорит не только о текстах переводимых при помощи ИИ, но также и о созданных с его помощью. Было отмечено, что уровень генеративных переводов был наиболее высоким при работе с языками с низким ресурсным уровнем, такими как африканские, а также Волоф и Коса.
На практике это означает, что некоторые языки почти не представлены в сети, что создает серьезное препятствие для создания надежных и объемных и грамматически корректных баз данных для языковых моделей. Из-за малого количества грамматически корректных и развернутых текстов на языке оригинала системе приходится полагаться на вторичный испорченный перевод широко распространенный в сети.
— Мехак Даливал, бывший стажер по прикладным наукам в Amazon Web Services.
Также исследователи Amazon выявили некоторую предвзятость в выборе контента используемого в обучении нейросетей.
— исследователи Amazon.
Еще в конце прошлого века Гейтс заявил о глобальных перспективах взаимодействия людей в сети. Он предполагал, что интернет будет способен объединить разноязычных пользователей из 200 стран по всему миру для открытого и беспрепятственного диалога.
Сеть становится основой для создания глобальной коммуникации будущего
— одна из ранних цитат Билла Гейтса о еще только развивающейся глобальной сети.
Безусловно, сейчас мы видим, что он оказался прав. Интернет стал самым популярным местом для обмена информацией и остается практически безальтернативной технологией коммуникации для людей по всему миру. Однако недавнее исследование открыло негативную сторону упрощения коммуникации между пользователями.
Ученые из лаборатории искусственного интеллекта Amazon Web Services и Калифорнийского университета в Санта-Барбаре изучив более 6 миллиардов предложений в интернете пришли к выводу, что около половины из их количества были переведены единожды или дважды с различных языков. При этом, как правило, качество перевода оставляло желать лучшего, а с каждым последующим только ухудшалось. По данным исследователей некоторые тексты были переведены около восьми или девяти раз, что иногда полностью меняло их изначальный смысл.
Исследование под названием «Шокирующее количество машинных переводов в сети: выводы о многопоточном параллелизме» было опубликовано в открытом доступе на сервисе arXiv 11 января.
Низкое качество таких переводов явно указывает, что они были созданы с использованием машинного перевода. Наша новая работа демонстрирует опасность текущего подхода к созданию больших многоязычных моделей обучения основанных на данных из сети. Также мы обнаружили, что многосторонний параллельный перевод значительно уступает в качестве двусторонний параллельный метод
— из текста работы.
Работа говорит не только о текстах переводимых при помощи ИИ, но также и о созданных с его помощью. Было отмечено, что уровень генеративных переводов был наиболее высоким при работе с языками с низким ресурсным уровнем, такими как африканские, а также Волоф и Коса.
На практике это означает, что некоторые языки почти не представлены в сети, что создает серьезное препятствие для создания надежных и объемных и грамматически корректных баз данных для языковых моделей. Из-за малого количества грамматически корректных и развернутых текстов на языке оригинала системе приходится полагаться на вторичный испорченный перевод широко распространенный в сети.
Мы заинтересовались данной проблемой, поскольку несколько наших коллег, являющихся носителями языка отметили, что большая часть контента на их языке в интернете создана при помощи машинного перевода. Следует учитывать, что любой контент наблюдаемый вами в сети может быть переведен или создан автоматически
— Мехак Даливал, бывший стажер по прикладным наукам в Amazon Web Services.
Также исследователи Amazon выявили некоторую предвзятость в выборе контента используемого в обучении нейросетей.
Генеративные многосторонние параллельные переводы на данный момент составляют основную долю в переведенном текстовом сетевом контенте. То же относится к большей части веб-контента на этих языках. Судя по всему, в общей статистике мы регистрируем весомую долю коротких и некачественных
— исследователи Amazon.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Как на ладони: Обнаружен морской гигант, который виден из космоса
Мегакоралл у Соломоновых островов оказался самым крупным животным Земли....
Спасти планету сможет… африканский червь
В Кении найдено насекомое с удивительными способностями....
Забудьте всё, что вы знали о Луне
Новая теория предлагает в корне иное происхождение ночного светила....
Главная тайна Седьмой планеты разгадана через 38 лет
Уран оказался не таким уж странным, как думали ученые....
80 000 лет жизни: какие тайны скрывает самое древнее и большое существо на планете?
Залог невероятного долголетия и удивительного выживания обнаружили учёные....
«Орешник», «Бук» и «Тополь»: искусный нейминг от российских военных конструкторов
Наука как сбить Запад с толку....
Раскрыт секрет идеального женского тела?
Оказывается, дело вовсе не в соотношении талии и бедер....
Янтарь из недр Антарктиды раскрыл тайны тропических лесов
Застывшая смола возрастом 90 млн лет как часть исчезнувшей экосистемы....
Саблезубый котёнок томился во льдах Якутии 35 тысяч лет
Благодаря находке стало известно, что сородичи пушистика обитали в столь холодных местах....
Ученая вылечила свой рак вирусами собственного производства
Если человек хочет жить — медицина бессильна....
Носи умные очки или увольняйся!
Amazon планирует заставить всех курьеров носить этот электронный прибор....
Разгадано учеными: почему города разрушают сердце и разум
Причины, которые нашли исследователи, вас удивят....
Почти бессмертные существа помогут человечеству покорить глубокий космос
Ученым, наконец, удалось «взломать» код поразительной живучести тихоходок....
Турбулентность отменяется! А пилоты-люди вообще будут не нужны
Искусственный интеллект может в корне изменить авиацию....
Надеялись на Беса: древние египтянки при беременности хлебали галлюциногенные смеси
Думали, что божок с двусмысленным для нас именем убережёт....
Чудо в перьях: Робот-голубь «упорхнёт» от радиолокации
Изобретение грозит новой гонкой вооружений....