
Новый материал для хранения водорода: дешевый, эффективный и долговечный
Водород — один из самых перспективных видов топлива для зеленой энергетики. Он не загрязняет окружающую среду, имеет высокую энергетическую плотность и может быть получен из разных источников. Однако у водорода есть и недостатки: он легко взрывается, требует высокого давления для сжатия и быстро теряет свои свойства при хранении.
Исследователи из Университета Токио и Национального института науки и технологии промышленных материалов (NIMS) нашли решение этих проблем. Они разработали новый материал, способный хранить водородную энергию более эффективным и дешевым способом.
Новый материал представляет собой соединение никеля и йода (NiI). Он обладает уникальной способностью поглощать и выделять водород при комнатной температуре. При этом он не требует дорогостоящих катализаторов или сложного оборудования. Кроме того, он может хранить водород до трех месяцев без потерь.
Для получения нового материала ученые использовали простой метод: они смешали раствор никеля (NiII) с газообразным водородом (H2) под небольшим давлением. В результате произошла одностадийная синтез NiI из NiII с H2. Этот процесс был обратим: при повторном подаче водорода NiI превращался обратно в NiII, выделяя ранее поглощенный водород.
Ученые измерили энергетическую плотность нового материала и сравнили ее с другими известными способами хранения водорода. Оказалось, что NiI имеет энергетическую плотность около 600 Вт·ч/кг, что превышает показатели металлогидридов, органических гидридов и углеродных нанотрубок. Также NiI имеет преимущество перед жидким аммиаком, который требует низкой температуры для хранения.
Новый материал для хранения водорода может стать прорывом в области зеленой энергетики. Он открывает возможности для создания компактных, безопасных и дешевых водородных батарей, которые могут быть использованы для автомобилей, домашних систем, портативных устройств и других целей.
Результаты исследования были опубликованы в журнале Chemistry—A European Journal1 под названием «Single-Step Synthesis of NiI from NiII with H2».
Исследователи из Университета Токио и Национального института науки и технологии промышленных материалов (NIMS) нашли решение этих проблем. Они разработали новый материал, способный хранить водородную энергию более эффективным и дешевым способом.
Новый материал представляет собой соединение никеля и йода (NiI). Он обладает уникальной способностью поглощать и выделять водород при комнатной температуре. При этом он не требует дорогостоящих катализаторов или сложного оборудования. Кроме того, он может хранить водород до трех месяцев без потерь.
Для получения нового материала ученые использовали простой метод: они смешали раствор никеля (NiII) с газообразным водородом (H2) под небольшим давлением. В результате произошла одностадийная синтез NiI из NiII с H2. Этот процесс был обратим: при повторном подаче водорода NiI превращался обратно в NiII, выделяя ранее поглощенный водород.
Ученые измерили энергетическую плотность нового материала и сравнили ее с другими известными способами хранения водорода. Оказалось, что NiI имеет энергетическую плотность около 600 Вт·ч/кг, что превышает показатели металлогидридов, органических гидридов и углеродных нанотрубок. Также NiI имеет преимущество перед жидким аммиаком, который требует низкой температуры для хранения.
Новый материал для хранения водорода может стать прорывом в области зеленой энергетики. Он открывает возможности для создания компактных, безопасных и дешевых водородных батарей, которые могут быть использованы для автомобилей, домашних систем, портативных устройств и других целей.
Результаты исследования были опубликованы в журнале Chemistry—A European Journal1 под названием «Single-Step Synthesis of NiI from NiII with H2».
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

NASA объявило: Найдены самые убедительные доказательства существования жизни на Марсе
Ученые тем временем выясняют, как могли выглядеть древние жители Красной планеты...

Специалисты предупреждают: Через три года интернет будет скорее мертвым, чем живым
Почему к 2030 году человеческое общение в сети может стать роскошью, а не нормой?...

16-тонный саркофаг, заполненный сокровищами, может подтвердить одну из самых таинственных и кровавых легенд древнего Китая
Какой секрет хранила эта гробница, что оставалась единственной нетронутой два тысячелетия?...

Ученый утверждает: у него есть доказательства, что мы живем в матрице
По словам Мелвина Вопсона, подсказки он нашел в ДНК, расширении Вселенной и фундаментальных законах физики...

Найдена самая похожая на Землю планета. Готовимся к переезду?
TRAPPIST-1e идеальная: тепло, есть вода и атмосфера. Чем же тогда недовольны астрофизики?...

Новая операция по объединению людей и животных может подарить… вечную жизнь
Медики признаются: уже сейчас можно сделать новое тело человека. Но один орган пока не поддается науке...

Оказывается, решение проблемы выбоин на дорогах существует уже почти 100 лет
Почему технология, забытая полвека назад, возвращается и становится очень популярной?...

Выяснилось, что полное восстановление озонового слоя закончится глобальной катастрофой
Как так вышло, что в борьбе за экологию человечество сделало себе еще хуже?...

К 2035 году сектор Газа должен стать… самым продвинутым регионом на планете под управлением ИИ
По словам экспертов, в дерзком эксперименте за 100 млрд долларов есть только один большой вопрос: Куда выселить местное население?...