
Импортонезависимость в трех измерениях: роботы сканируют детали атомной отрасли
В российской атомной отрасли появилась новая полностью отечественная технология, которая позволяет с высокой точностью измерять геометрию деталей сложной формы с отражающими поверхностями. Это роботизированное высокоточное 3D-сканирование, которое разработали специалисты компании Росатома «Цифрум» и Института машиностроения, материалов и транспорта (ИММИТ) Санкт-Петербургского политехнического университета Петра Великого. Технология может существенно повысить эффективность и качество производства, а также снизить затраты на контроль и исправление ошибок.
3D-сканирование — это процесс получения трехмерной модели объекта на основе его фотографий или лазерных изображений. Такая модель может быть использована для различных целей: например, для создания копий объекта, для его дальнейшего проектирования или модификации, для контроля качества или для анализа его свойств.
В атомной отрасли 3D-сканирование применяется для контроля геометрии деталей, которые используются в различных устройствах и конструкциях: например, в реакторах, турбинах, насосах, трубопроводах и т. д. Точность геометрии деталей влияет на безопасность, надежность и эффективность работы атомных объектов. Поэтому важно обеспечить соответствие деталей заранее заданным параметрам и избегать их деформации в процессе изготовления или эксплуатации.
Для этого необходимо проводить регулярные измерения геометрии деталей с помощью специальных приборов — контрольно-измерительных машин (КИМ). Однако такие машины имеют ряд недостатков: они дорогие, сложные в обслуживании и требуют большого количества времени и ресурсов для проведения измерений. Кроме того, они не могут работать с деталями, имеющими зеркальную поверхность, так как отражение света мешает получению точных данных. Для таких деталей необходимо наносить специальные составы, которые уменьшают отражение, но при этом могут повредить поверхность или изменить ее свойства.
Технология роботизированного высокоточного 3D-сканирования основана на использовании роботов, которые оснащены камерами и лазерными сканерами. Роботы могут автоматически перемещаться по заданной траектории и сканировать детали с разных ракурсов. При этом они учитывают особенности формы и поверхности деталей и подбирают оптимальные параметры сканирования. Затем полученные данные обрабатываются специальным программным обеспечением, которое создает трехмерную модель детали и сравнивает ее с эталонной.
Таким образом, можно определить, есть ли отклонения в геометрии детали и насколько они значительны. Это позволяет своевременно обнаруживать и исправлять ошибки, которые могут привести к снижению качества или безопасности продукции. Кроме того, это способствует повышению производительности и сокращению себестоимости, так как уменьшается количество бракованных деталей и отходов. Наконец, это способствует развитию инноваций и конкурентоспособности, так как позволяет создавать более сложные и точные детали, которые могут улучшить характеристики атомных объектов.
Новая технология роботизированного высокоточного 3D-сканирования имеет большой потенциал для развития и применения в атомной отрасли и не только. По словам разработчиков, технология может быть адаптирована для разных типов деталей и разных отраслей промышленности, где требуется высокая точность геометрии. Также технология может быть интегрирована с другими цифровыми решениями, такими как цифровые двойники, искусственный интеллект, машинное обучение и т. д. Это может дать новые возможности для оптимизации производства, управления качеством, анализа данных и принятия решений.
В настоящее время технология находится на стадии испытаний и совершенствования. Испытания показали высокие результаты: зеркальная поверхность отсканирована без ошибок, а точность измерений обеспечена «с запасом». Несмотря на необходимость доработки, уже сейчас она вызывает интерес у представителей более чем 20 предприятий различных дивизионов атомной отрасли, которые хотят внедрить ее на своих производствах и обменяться опытом в сфере робототехники. Также разработка привлекла внимание других отраслей промышленности, таких как авиация, космос, медицина и т.д., где также требуется высокая точность геометрии деталей.
Что такое 3D-сканирование и зачем оно нужно?
3D-сканирование — это процесс получения трехмерной модели объекта на основе его фотографий или лазерных изображений. Такая модель может быть использована для различных целей: например, для создания копий объекта, для его дальнейшего проектирования или модификации, для контроля качества или для анализа его свойств.
В атомной отрасли 3D-сканирование применяется для контроля геометрии деталей, которые используются в различных устройствах и конструкциях: например, в реакторах, турбинах, насосах, трубопроводах и т. д. Точность геометрии деталей влияет на безопасность, надежность и эффективность работы атомных объектов. Поэтому важно обеспечить соответствие деталей заранее заданным параметрам и избегать их деформации в процессе изготовления или эксплуатации.
Для этого необходимо проводить регулярные измерения геометрии деталей с помощью специальных приборов — контрольно-измерительных машин (КИМ). Однако такие машины имеют ряд недостатков: они дорогие, сложные в обслуживании и требуют большого количества времени и ресурсов для проведения измерений. Кроме того, они не могут работать с деталями, имеющими зеркальную поверхность, так как отражение света мешает получению точных данных. Для таких деталей необходимо наносить специальные составы, которые уменьшают отражение, но при этом могут повредить поверхность или изменить ее свойства.
Как работает новая технология?
Технология роботизированного высокоточного 3D-сканирования основана на использовании роботов, которые оснащены камерами и лазерными сканерами. Роботы могут автоматически перемещаться по заданной траектории и сканировать детали с разных ракурсов. При этом они учитывают особенности формы и поверхности деталей и подбирают оптимальные параметры сканирования. Затем полученные данные обрабатываются специальным программным обеспечением, которое создает трехмерную модель детали и сравнивает ее с эталонной.
Таким образом, можно определить, есть ли отклонения в геометрии детали и насколько они значительны. Это позволяет своевременно обнаруживать и исправлять ошибки, которые могут привести к снижению качества или безопасности продукции. Кроме того, это способствует повышению производительности и сокращению себестоимости, так как уменьшается количество бракованных деталей и отходов. Наконец, это способствует развитию инноваций и конкурентоспособности, так как позволяет создавать более сложные и точные детали, которые могут улучшить характеристики атомных объектов.
Новая технология роботизированного высокоточного 3D-сканирования имеет большой потенциал для развития и применения в атомной отрасли и не только. По словам разработчиков, технология может быть адаптирована для разных типов деталей и разных отраслей промышленности, где требуется высокая точность геометрии. Также технология может быть интегрирована с другими цифровыми решениями, такими как цифровые двойники, искусственный интеллект, машинное обучение и т. д. Это может дать новые возможности для оптимизации производства, управления качеством, анализа данных и принятия решений.
В настоящее время технология находится на стадии испытаний и совершенствования. Испытания показали высокие результаты: зеркальная поверхность отсканирована без ошибок, а точность измерений обеспечена «с запасом». Несмотря на необходимость доработки, уже сейчас она вызывает интерес у представителей более чем 20 предприятий различных дивизионов атомной отрасли, которые хотят внедрить ее на своих производствах и обменяться опытом в сфере робототехники. Также разработка привлекла внимание других отраслей промышленности, таких как авиация, космос, медицина и т.д., где также требуется высокая точность геометрии деталей.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Аргентинские ученые предложили неожиданную разгадку тайны Антикитерского механизма
Возможно, он постоянно «зависал», как старый компьютер. Или был вообще… игрушкой....

Еще раз о ядерной войне на Марсе
Гипотетический конфликт на Красной планете не дает покоя некоторым ученым....

В мозгах спецназовцев обнаружились скрытые аномалии
Новейшее исследование показало, что обычный МРТ вообще не видит некоторые травмы головы....

Причина необъяснимых нападений морских львов на людей наконец-то раскрыта
Все дело в редком токсине, который заполонил прибрежные воды Калифорнии....

Ужасное наводнение создало Средиземное море всего за несколько месяцев
Потоп мчался со скоростью 115 километров в час....

Властелины огня: как древние люди поддерживали пламя в самые холодные времена
Основным топливом была древесина ели....

Термоядерный двигатель доставит людей до Марса всего за три месяца
Новая эра космических исследований вот-вот начнется?...

А фиолетовый-то, говорят… ненастоящий!
Ученые доказали, что этот цвет — иллюзия, существующая лишь у нас в голове....

Общий наркоз стирает уникальность головного мозга
Открытие поможет выводить пациентов из комы....

Чужой бог в сердце Тикаля: Тайна алтаря, который хотели забыть
Археологи рассказали, почему майя стирали следы чужой цивилизации....

Археологи обнаружили в Египте 3400-летний затерянный город
Самое поразительное: он скрывался… под руинами древнегреческого некрополя....

Стало известно, как Земля «выкачала» воду с обратной стороны Луны
Сенсацию принес аппарат китайской миссии «Чанъэ-6»....

Новое исследование показало: мягкие игрушки — самые опасные вещи в доме
Микробов в этих предметах оказалось вдвое больше, чем на сиденье унитаза....

Ещё одна бесценная находка: челюсть с берегов Тайваня принадлежала денисовцу
Загадка не давала покоя несколько лет....

Раскрыт секрет: почему самые древние метеориты не долетают до Земли
Против само Солнце, но это не единственная причина....

Зачем археологи измерили и сравнили размеры 50 000 древних домов
Общественное расслоение нельзя считать неизбежным....