Стеклянные металлы: новый сплав для импортозамещения
Металлы — твердые вещества с кристаллической структурой, то есть с определенным порядком расположения атомов в пространстве. Но есть и исключения: некоторые металлы могут иметь аморфную структуру, то есть без кристаллов. Такие металлы называются аморфными или стеклянными, потому что их атомная структура похожа на структуру обычного стекла.
Аморфные металлы обладают уникальными свойствами: они очень прочные, твердые, вязкие и коррозионностойкие. Кроме того, они имеют высокую магнитную проницаемость и низкое электрическое сопротивление. Эти качества делают их востребованными в разных отраслях промышленности: от электротехники до авиации.
Однако получить аморфный металл не так просто: для этого нужно сверхбыстро охладить расплавленный металл до твердого состояния, не дав ему кристаллизоваться. Обычно это делается методом закалки из жидкого состояния: расплавленный металл распыляется на тонкие ленты или проволоку с помощью специальных форсунок. Но такой способ позволяет получать только небольшие образцы аморфных металлов.
Исследователи из Уральского государственного педагогического университета (УрГПУ) нашли способ синтезировать аморфный сплав большего размера с заданными свойствами. Они использовали для этого сплав на основе алюминия, никеля, кобальта, меди и циркония, содержащий эти компоненты в равных долях. Эти металлы широко применяются в промышленности и придают сплаву разные характеристики: твердость, пластичность, коррозионную стойкость.
Главная особенность работы уральских ученых заключается в том, что они смогли добиться аморфного состояния сплава с помощью специально выбранных условий закалки. Оказалось, что для этого достаточно охладить сплав до комнатной температуры со скоростью около 1000 градусов в секунду. Это намного меньше, чем для других аморфных сплавов, для которых нужна скорость охлаждения порядка миллиона градусов в секунду. Благодаря этому можно получать аморфный сплав большего объема и формы.
— руководитель проекта, старший научный сотрудник УрГПУ Борис Русанов.
В ближайшее время коллектив УрГПУ планирует исследовать коррозионные свойства аморфного сплава с различным соотношением компонентов. Ученые хотят выяснить, можно ли его применять в агрессивных средах, таких как морская вода. По словам одного из авторов работы, профессора Александра Русанова, комплексное изучение сплава позволит создавать собственные критически важные комплектующие, которые заменят импортные.
Аморфные металлы обладают уникальными свойствами: они очень прочные, твердые, вязкие и коррозионностойкие. Кроме того, они имеют высокую магнитную проницаемость и низкое электрическое сопротивление. Эти качества делают их востребованными в разных отраслях промышленности: от электротехники до авиации.
Однако получить аморфный металл не так просто: для этого нужно сверхбыстро охладить расплавленный металл до твердого состояния, не дав ему кристаллизоваться. Обычно это делается методом закалки из жидкого состояния: расплавленный металл распыляется на тонкие ленты или проволоку с помощью специальных форсунок. Но такой способ позволяет получать только небольшие образцы аморфных металлов.
Исследователи из Уральского государственного педагогического университета (УрГПУ) нашли способ синтезировать аморфный сплав большего размера с заданными свойствами. Они использовали для этого сплав на основе алюминия, никеля, кобальта, меди и циркония, содержащий эти компоненты в равных долях. Эти металлы широко применяются в промышленности и придают сплаву разные характеристики: твердость, пластичность, коррозионную стойкость.
Главная особенность работы уральских ученых заключается в том, что они смогли добиться аморфного состояния сплава с помощью специально выбранных условий закалки. Оказалось, что для этого достаточно охладить сплав до комнатной температуры со скоростью около 1000 градусов в секунду. Это намного меньше, чем для других аморфных сплавов, для которых нужна скорость охлаждения порядка миллиона градусов в секунду. Благодаря этому можно получать аморфный сплав большего объема и формы.
Полученный нами сплав можно использовать как материал для различных устройств, например, электромагнитных датчиков. Но уже сейчас можно сказать, что образованная структура сплава при быстрой закалке может обеспечить высокие показатели микротвердости, прочности и коррозионной стойкости
— руководитель проекта, старший научный сотрудник УрГПУ Борис Русанов.
В ближайшее время коллектив УрГПУ планирует исследовать коррозионные свойства аморфного сплава с различным соотношением компонентов. Ученые хотят выяснить, можно ли его применять в агрессивных средах, таких как морская вода. По словам одного из авторов работы, профессора Александра Русанова, комплексное изучение сплава позволит создавать собственные критически важные комплектующие, которые заменят импортные.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Золотой колокольчик из Эрмитажа: почему Владимир Путин запретил выставлять этот артефакт за границей?
Сколько сокровищ потеряла Россия в последнее время, пока не поняла, что договоры с Западом не стоят даже бумаги, на которой написаны?...
Операция «Байконур»: как СССР дерзко и красиво долгие годы водил за нос весь Запад
С какого космодрома на самом деле стартовал Юрий Гагарин?...
11 лет обмана и позора: Эксперты констатируют, что программа «Чистый Эверест» с треском провалилась
Кто и почему превращает высочайшую гору на планете в гигантскую свалку?...
Ученые рассказали, какой фрукт подчинил себе весь Китай
Как продукт с очень специфическим запахом стал управлять дипломатией и экономикой Юго-Восточной Азии?...
Рассекреченные архивы ФСБ полностью подтвердили легенду о медали № 00001 «За оборону Сталинграда»
Историки рассказали: почему Сталин пришел в гнев, когда ему попытались вручить эту награду...
Главная тайна Аркаима: что спасло самый древний город на территории России от полного уничтожения?
Почему эксперты считают, что в этом месте «текут» две параллельные реальности?...
Забытые истории: где искать потерянные русские города?
Последний языческий город, почему Тмутаракань — головная боль археологов и что не так со Старой Рязанью...
Чужое сердце, чужая жизнь: эти истории заставляют сомневаться в науке
Новое исследование говорит: 90% людей, получивших чужие органы, признаются, что они странно изменились после операции...
Наука в корне ошибалась: на Титане нет огромного океана, вместо этого он пронизан «слякотными туннелями»
Почему ученые уверены, что новое открытие только увеличивает шансы на нахождение жизни на крупнейшем спутнике Сатурна?...