
Российские ученые ускорили квантовые вычисления
Российские ученые и инженеры сделали важный шаг в области квантовых технологий. Участник Нижегородского НОЦ — ННГУ им. Н. И. Лобачевского вместе с МГУ им. М. В. Ломоносова и Российским квантовым центром разработали программный комплекс для проведения высокоточных быстрых квантовых операций в сверхпроводниковых регистрах. Этот комплекс был представлен на презентации фестиваля Всероссийского общества изобретателей и рационализаторов руководителем направления «Квантовые технологии» ИНТЦ «Квантовая долина» Мариной Бастраковой.
Программный комплекс позволяет создавать и оптимизировать последовательности микроволновых импульсов, которые подаются на кубиты — квантовые аналоги битов, которые являются наименьшими единицами информации в квантовом компьютере. Эти импульсы определяют, какие квантовые операции будут выполнены над кубитами, а также как будет измерено их состояние. Программный комплекс также учитывает различные факторы, которые могут повлиять на точность и скорость квантовых вычислений, такие как нелинейность джозефсоновских переходов, дисперсия линий передачи, шумы и декогеренция.
Программный комплекс был протестирован на сверхпроводниковых кубитах-трансмонах, которые являются одним из самых распространенных типов кубитов в мире. Трансмон — разновидность зарядового кубита, который состоит из двух сверхпроводящих обкладок, разделенных тонким слоем диэлектрика. Трансмон имеет два основных состояния — ноль и единица, которые соответствуют разному количеству пар Купера (сверхпроводящих электронных пар) на обкладках. Трансмон отличается от зарядового кубита тем, что он менее чувствителен к шумам заряда за счет большой емкости обкладок.
С помощью программного комплекса удалось продемонстрировать высокую точность одно- и двухкубитных операций на трансмонах, а также реализовать простые квантовые алгоритмы, такие как алгоритм Дойча-Йожи и алгоритм Гровера. Эти алгоритмы показывают преимущества квантовых компьютеров над классическими компьютерами в некоторых задачах.
Алгоритм Дойча-Йожи является одним из таких примеров. Он позволяет определить, является ли заданная булева функция от n переменных постоянной или сбалансированной, то есть принимающей равное количество значений 0 и 1 для всех возможных наборов аргументов. Для этого алгоритму достаточно одного обращения к квантовому оракулу, который реализует функцию в виде унитарного преобразования над n+1 кубитами. При этом классическому алгоритму потребовалось бы 2^(n-1)+1 обращений к оракулу в худшем случае.
Алгоритм Дойча-Йожи работает следующим образом. На входе он имеет n+1 кубит, из которых n кубитов находятся в состоянии |0>, а один кубит в состоянии |1>. Затем на все кубиты применяется преобразование Адамара, которое переводит каждый кубит в суперпозицию состояний |0> и |1>. После этого на кубиты действует оракул, который меняет знак тех состояний, для которых функция равна 1. Наконец, на первые n кубитов снова применяется преобразование Адамара, а затем измеряется их состояние. Если функция постоянная, то вероятность получить все нули равна 1. Если функция сбалансированная, то вероятность получить все нули равна 0.
Алгоритм Дойча-Йожи демонстрирует, что квантовые компьютеры могут использовать параллелизм и интерференцию для решения задач эффективнее, чем классические компьютеры. Однако этот алгоритм не имеет большого практического значения, так как задача определения типа функции не является очень интересной или полезной. Кроме того, алгоритм требует идеальной когерентности и изоляции кубитов от шумов, что трудно достичь на практике.
Поэтому разработка более сложных и мощных квантовых алгоритмов является одним из актуальных направлений в области квантовых технологий. Российские ученые и инженеры продолжают работать над созданием сверхпроводниковых квантовых процессоров и развитием программного обеспечения для них. В перспективе они надеются достичь квантового превосходства — демонстрации того, что квантовый компьютер может решать задачу, которая невыполнима для любого классического компьютера за разумное время.
Программный комплекс позволяет создавать и оптимизировать последовательности микроволновых импульсов, которые подаются на кубиты — квантовые аналоги битов, которые являются наименьшими единицами информации в квантовом компьютере. Эти импульсы определяют, какие квантовые операции будут выполнены над кубитами, а также как будет измерено их состояние. Программный комплекс также учитывает различные факторы, которые могут повлиять на точность и скорость квантовых вычислений, такие как нелинейность джозефсоновских переходов, дисперсия линий передачи, шумы и декогеренция.
Программный комплекс был протестирован на сверхпроводниковых кубитах-трансмонах, которые являются одним из самых распространенных типов кубитов в мире. Трансмон — разновидность зарядового кубита, который состоит из двух сверхпроводящих обкладок, разделенных тонким слоем диэлектрика. Трансмон имеет два основных состояния — ноль и единица, которые соответствуют разному количеству пар Купера (сверхпроводящих электронных пар) на обкладках. Трансмон отличается от зарядового кубита тем, что он менее чувствителен к шумам заряда за счет большой емкости обкладок.
С помощью программного комплекса удалось продемонстрировать высокую точность одно- и двухкубитных операций на трансмонах, а также реализовать простые квантовые алгоритмы, такие как алгоритм Дойча-Йожи и алгоритм Гровера. Эти алгоритмы показывают преимущества квантовых компьютеров над классическими компьютерами в некоторых задачах.
Алгоритм Дойча-Йожи является одним из таких примеров. Он позволяет определить, является ли заданная булева функция от n переменных постоянной или сбалансированной, то есть принимающей равное количество значений 0 и 1 для всех возможных наборов аргументов. Для этого алгоритму достаточно одного обращения к квантовому оракулу, который реализует функцию в виде унитарного преобразования над n+1 кубитами. При этом классическому алгоритму потребовалось бы 2^(n-1)+1 обращений к оракулу в худшем случае.
Алгоритм Дойча-Йожи работает следующим образом. На входе он имеет n+1 кубит, из которых n кубитов находятся в состоянии |0>, а один кубит в состоянии |1>. Затем на все кубиты применяется преобразование Адамара, которое переводит каждый кубит в суперпозицию состояний |0> и |1>. После этого на кубиты действует оракул, который меняет знак тех состояний, для которых функция равна 1. Наконец, на первые n кубитов снова применяется преобразование Адамара, а затем измеряется их состояние. Если функция постоянная, то вероятность получить все нули равна 1. Если функция сбалансированная, то вероятность получить все нули равна 0.
Алгоритм Дойча-Йожи демонстрирует, что квантовые компьютеры могут использовать параллелизм и интерференцию для решения задач эффективнее, чем классические компьютеры. Однако этот алгоритм не имеет большого практического значения, так как задача определения типа функции не является очень интересной или полезной. Кроме того, алгоритм требует идеальной когерентности и изоляции кубитов от шумов, что трудно достичь на практике.
Поэтому разработка более сложных и мощных квантовых алгоритмов является одним из актуальных направлений в области квантовых технологий. Российские ученые и инженеры продолжают работать над созданием сверхпроводниковых квантовых процессоров и развитием программного обеспечения для них. В перспективе они надеются достичь квантового превосходства — демонстрации того, что квантовый компьютер может решать задачу, которая невыполнима для любого классического компьютера за разумное время.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Турецкие археологи обнаружили затерянный мост, способный переписать всю раннюю историю человечества
Оказалось, что научная сенсация все это время... валялась у ученых буквально под ногами...

Эксперты говорят: изобретение ученых из Перми решает одну из самых серьезных и опасных проблем в современной авиации
Американцы потратили на это десятки лет и миллиарды долларов, но открытие сделали в России...

В Антарктиде обнаружен метановый «спящий гигант», который очень быстро просыпается. И это плохая новость
Ученые в тревоге задаются вопросом: означают ли десятки газовых гейзеров под водой, что эффект домино уже запущен?...

В самом большом кратере Луны происходит что-то очень странное
Поэтому астронавты планируют туда заглянуть в самое ближайшее время...

Секретные спутники Илона Маска заподозрили в использовании запрещенных сигналов
Что это значит для России и чем могут ответить наши военные?...

Археологи поражены: 404 тысячи лет назад «римляне» спокойно разделали гигантского слона... 3-сантиметровыми ножичками
Получается, что древние охотники могли справиться с самым большим животным в Европе буквально голыми руками?...

Ученые обнаружили на Кавказе «ужасного» хищника, способного дробить черепа с одного укуса
Почему же 400-килограммовый монстр, побеждавший медведей и саблезубых тигров, все-таки исчез с лица планеты?...

«Черный ящик» раскрыл тайну летучей мыши, пожирающей птиц прямо в полете
Ученые совершенно не ожидали, что рукокрылый властелин ночного неба по свирепости и охотничьему мастерству даст фору даже соколам...

Ученые выяснили: в каком возрасте наш мозг достигает пика своей активности
Почему же 20-30 лет оказались стереотипом, далеким от реальной жизни?...

2700 дней понадобилось ученым, чтобы, наконец, раскрыть главную тайну гигантских скатов
Оказалось, что манты ныряют на 1250-метровую глубину вовсе не за едой и не спасаясь от хищников...

ДНК из ниоткуда: 6000-летние останки в Колумбии ни с кем совпадают по генам. Вообще.
Если у этих людей нет ни предков, ни потомков, то кто они такие?...

Мог ли великий художник Клод Моне видеть в ультрафиолетовом спектре, как пчела?
Историки уверены: после операции на глазах с французским живописцем стали происходит очень странные вещи...

В ближайшие 100 лет Юпитер «выстрелит» в Землю как минимум 342 раза
Российские ученые рассчитали: ближайшее «прицеливание» состоится уже 2031 году. Что вообще нам ожидать?...