Российские ученые ускорили квантовые вычисления
Российские ученые и инженеры сделали важный шаг в области квантовых технологий. Участник Нижегородского НОЦ — ННГУ им. Н. И. Лобачевского вместе с МГУ им. М. В. Ломоносова и Российским квантовым центром разработали программный комплекс для проведения высокоточных быстрых квантовых операций в сверхпроводниковых регистрах. Этот комплекс был представлен на презентации фестиваля Всероссийского общества изобретателей и рационализаторов руководителем направления «Квантовые технологии» ИНТЦ «Квантовая долина» Мариной Бастраковой.
Программный комплекс позволяет создавать и оптимизировать последовательности микроволновых импульсов, которые подаются на кубиты — квантовые аналоги битов, которые являются наименьшими единицами информации в квантовом компьютере. Эти импульсы определяют, какие квантовые операции будут выполнены над кубитами, а также как будет измерено их состояние. Программный комплекс также учитывает различные факторы, которые могут повлиять на точность и скорость квантовых вычислений, такие как нелинейность джозефсоновских переходов, дисперсия линий передачи, шумы и декогеренция.
Программный комплекс был протестирован на сверхпроводниковых кубитах-трансмонах, которые являются одним из самых распространенных типов кубитов в мире. Трансмон — разновидность зарядового кубита, который состоит из двух сверхпроводящих обкладок, разделенных тонким слоем диэлектрика. Трансмон имеет два основных состояния — ноль и единица, которые соответствуют разному количеству пар Купера (сверхпроводящих электронных пар) на обкладках. Трансмон отличается от зарядового кубита тем, что он менее чувствителен к шумам заряда за счет большой емкости обкладок.
С помощью программного комплекса удалось продемонстрировать высокую точность одно- и двухкубитных операций на трансмонах, а также реализовать простые квантовые алгоритмы, такие как алгоритм Дойча-Йожи и алгоритм Гровера. Эти алгоритмы показывают преимущества квантовых компьютеров над классическими компьютерами в некоторых задачах.
Алгоритм Дойча-Йожи является одним из таких примеров. Он позволяет определить, является ли заданная булева функция от n переменных постоянной или сбалансированной, то есть принимающей равное количество значений 0 и 1 для всех возможных наборов аргументов. Для этого алгоритму достаточно одного обращения к квантовому оракулу, который реализует функцию в виде унитарного преобразования над n+1 кубитами. При этом классическому алгоритму потребовалось бы 2^(n-1)+1 обращений к оракулу в худшем случае.
Алгоритм Дойча-Йожи работает следующим образом. На входе он имеет n+1 кубит, из которых n кубитов находятся в состоянии |0>, а один кубит в состоянии |1>. Затем на все кубиты применяется преобразование Адамара, которое переводит каждый кубит в суперпозицию состояний |0> и |1>. После этого на кубиты действует оракул, который меняет знак тех состояний, для которых функция равна 1. Наконец, на первые n кубитов снова применяется преобразование Адамара, а затем измеряется их состояние. Если функция постоянная, то вероятность получить все нули равна 1. Если функция сбалансированная, то вероятность получить все нули равна 0.
Алгоритм Дойча-Йожи демонстрирует, что квантовые компьютеры могут использовать параллелизм и интерференцию для решения задач эффективнее, чем классические компьютеры. Однако этот алгоритм не имеет большого практического значения, так как задача определения типа функции не является очень интересной или полезной. Кроме того, алгоритм требует идеальной когерентности и изоляции кубитов от шумов, что трудно достичь на практике.
Поэтому разработка более сложных и мощных квантовых алгоритмов является одним из актуальных направлений в области квантовых технологий. Российские ученые и инженеры продолжают работать над созданием сверхпроводниковых квантовых процессоров и развитием программного обеспечения для них. В перспективе они надеются достичь квантового превосходства — демонстрации того, что квантовый компьютер может решать задачу, которая невыполнима для любого классического компьютера за разумное время.
Программный комплекс позволяет создавать и оптимизировать последовательности микроволновых импульсов, которые подаются на кубиты — квантовые аналоги битов, которые являются наименьшими единицами информации в квантовом компьютере. Эти импульсы определяют, какие квантовые операции будут выполнены над кубитами, а также как будет измерено их состояние. Программный комплекс также учитывает различные факторы, которые могут повлиять на точность и скорость квантовых вычислений, такие как нелинейность джозефсоновских переходов, дисперсия линий передачи, шумы и декогеренция.
Программный комплекс был протестирован на сверхпроводниковых кубитах-трансмонах, которые являются одним из самых распространенных типов кубитов в мире. Трансмон — разновидность зарядового кубита, который состоит из двух сверхпроводящих обкладок, разделенных тонким слоем диэлектрика. Трансмон имеет два основных состояния — ноль и единица, которые соответствуют разному количеству пар Купера (сверхпроводящих электронных пар) на обкладках. Трансмон отличается от зарядового кубита тем, что он менее чувствителен к шумам заряда за счет большой емкости обкладок.
С помощью программного комплекса удалось продемонстрировать высокую точность одно- и двухкубитных операций на трансмонах, а также реализовать простые квантовые алгоритмы, такие как алгоритм Дойча-Йожи и алгоритм Гровера. Эти алгоритмы показывают преимущества квантовых компьютеров над классическими компьютерами в некоторых задачах.
Алгоритм Дойча-Йожи является одним из таких примеров. Он позволяет определить, является ли заданная булева функция от n переменных постоянной или сбалансированной, то есть принимающей равное количество значений 0 и 1 для всех возможных наборов аргументов. Для этого алгоритму достаточно одного обращения к квантовому оракулу, который реализует функцию в виде унитарного преобразования над n+1 кубитами. При этом классическому алгоритму потребовалось бы 2^(n-1)+1 обращений к оракулу в худшем случае.
Алгоритм Дойча-Йожи работает следующим образом. На входе он имеет n+1 кубит, из которых n кубитов находятся в состоянии |0>, а один кубит в состоянии |1>. Затем на все кубиты применяется преобразование Адамара, которое переводит каждый кубит в суперпозицию состояний |0> и |1>. После этого на кубиты действует оракул, который меняет знак тех состояний, для которых функция равна 1. Наконец, на первые n кубитов снова применяется преобразование Адамара, а затем измеряется их состояние. Если функция постоянная, то вероятность получить все нули равна 1. Если функция сбалансированная, то вероятность получить все нули равна 0.
Алгоритм Дойча-Йожи демонстрирует, что квантовые компьютеры могут использовать параллелизм и интерференцию для решения задач эффективнее, чем классические компьютеры. Однако этот алгоритм не имеет большого практического значения, так как задача определения типа функции не является очень интересной или полезной. Кроме того, алгоритм требует идеальной когерентности и изоляции кубитов от шумов, что трудно достичь на практике.
Поэтому разработка более сложных и мощных квантовых алгоритмов является одним из актуальных направлений в области квантовых технологий. Российские ученые и инженеры продолжают работать над созданием сверхпроводниковых квантовых процессоров и развитием программного обеспечения для них. В перспективе они надеются достичь квантового превосходства — демонстрации того, что квантовый компьютер может решать задачу, которая невыполнима для любого классического компьютера за разумное время.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Как на ладони: Обнаружен морской гигант, который виден из космоса
Мегакоралл у Соломоновых островов оказался самым крупным животным Земли....
Спасти планету сможет… африканский червь
В Кении найдено насекомое с удивительными способностями....
Забудьте всё, что вы знали о Луне
Новая теория предлагает в корне иное происхождение ночного светила....
Главная тайна Седьмой планеты разгадана через 38 лет
Уран оказался не таким уж странным, как думали ученые....
80 000 лет жизни: какие тайны скрывает самое древнее и большое существо на планете?
Залог невероятного долголетия и удивительного выживания обнаружили учёные....
Раскрыт секрет идеального женского тела?
Оказывается, дело вовсе не в соотношении талии и бедер....
«Орешник», «Бук» и «Тополь»: искусный нейминг от российских военных конструкторов
Наука как сбить Запад с толку....
Янтарь из недр Антарктиды раскрыл тайны тропических лесов
Застывшая смола возрастом 90 млн лет как часть исчезнувшей экосистемы....
Саблезубый котёнок томился во льдах Якутии 35 тысяч лет
Благодаря находке стало известно, что сородичи пушистика обитали в столь холодных местах....
Ученая вылечила свой рак вирусами собственного производства
Если человек хочет жить — медицина бессильна....
Носи умные очки или увольняйся!
Amazon планирует заставить всех курьеров носить этот электронный прибор....
Разгадано учеными: почему города разрушают сердце и разум
Причины, которые нашли исследователи, вас удивят....
Почти бессмертные существа помогут человечеству покорить глубокий космос
Ученым, наконец, удалось «взломать» код поразительной живучести тихоходок....
Турбулентность отменяется! А пилоты-люди вообще будут не нужны
Искусственный интеллект может в корне изменить авиацию....
Надеялись на Беса: древние египтянки при беременности хлебали галлюциногенные смеси
Думали, что божок с двусмысленным для нас именем убережёт....
Чудо в перьях: Робот-голубь «упорхнёт» от радиолокации
Изобретение грозит новой гонкой вооружений....