
Российские ученые ускорили квантовые вычисления
Российские ученые и инженеры сделали важный шаг в области квантовых технологий. Участник Нижегородского НОЦ — ННГУ им. Н. И. Лобачевского вместе с МГУ им. М. В. Ломоносова и Российским квантовым центром разработали программный комплекс для проведения высокоточных быстрых квантовых операций в сверхпроводниковых регистрах. Этот комплекс был представлен на презентации фестиваля Всероссийского общества изобретателей и рационализаторов руководителем направления «Квантовые технологии» ИНТЦ «Квантовая долина» Мариной Бастраковой.
Программный комплекс позволяет создавать и оптимизировать последовательности микроволновых импульсов, которые подаются на кубиты — квантовые аналоги битов, которые являются наименьшими единицами информации в квантовом компьютере. Эти импульсы определяют, какие квантовые операции будут выполнены над кубитами, а также как будет измерено их состояние. Программный комплекс также учитывает различные факторы, которые могут повлиять на точность и скорость квантовых вычислений, такие как нелинейность джозефсоновских переходов, дисперсия линий передачи, шумы и декогеренция.
Программный комплекс был протестирован на сверхпроводниковых кубитах-трансмонах, которые являются одним из самых распространенных типов кубитов в мире. Трансмон — разновидность зарядового кубита, который состоит из двух сверхпроводящих обкладок, разделенных тонким слоем диэлектрика. Трансмон имеет два основных состояния — ноль и единица, которые соответствуют разному количеству пар Купера (сверхпроводящих электронных пар) на обкладках. Трансмон отличается от зарядового кубита тем, что он менее чувствителен к шумам заряда за счет большой емкости обкладок.
С помощью программного комплекса удалось продемонстрировать высокую точность одно- и двухкубитных операций на трансмонах, а также реализовать простые квантовые алгоритмы, такие как алгоритм Дойча-Йожи и алгоритм Гровера. Эти алгоритмы показывают преимущества квантовых компьютеров над классическими компьютерами в некоторых задачах.
Алгоритм Дойча-Йожи является одним из таких примеров. Он позволяет определить, является ли заданная булева функция от n переменных постоянной или сбалансированной, то есть принимающей равное количество значений 0 и 1 для всех возможных наборов аргументов. Для этого алгоритму достаточно одного обращения к квантовому оракулу, который реализует функцию в виде унитарного преобразования над n+1 кубитами. При этом классическому алгоритму потребовалось бы 2^(n-1)+1 обращений к оракулу в худшем случае.
Алгоритм Дойча-Йожи работает следующим образом. На входе он имеет n+1 кубит, из которых n кубитов находятся в состоянии |0>, а один кубит в состоянии |1>. Затем на все кубиты применяется преобразование Адамара, которое переводит каждый кубит в суперпозицию состояний |0> и |1>. После этого на кубиты действует оракул, который меняет знак тех состояний, для которых функция равна 1. Наконец, на первые n кубитов снова применяется преобразование Адамара, а затем измеряется их состояние. Если функция постоянная, то вероятность получить все нули равна 1. Если функция сбалансированная, то вероятность получить все нули равна 0.
Алгоритм Дойча-Йожи демонстрирует, что квантовые компьютеры могут использовать параллелизм и интерференцию для решения задач эффективнее, чем классические компьютеры. Однако этот алгоритм не имеет большого практического значения, так как задача определения типа функции не является очень интересной или полезной. Кроме того, алгоритм требует идеальной когерентности и изоляции кубитов от шумов, что трудно достичь на практике.
Поэтому разработка более сложных и мощных квантовых алгоритмов является одним из актуальных направлений в области квантовых технологий. Российские ученые и инженеры продолжают работать над созданием сверхпроводниковых квантовых процессоров и развитием программного обеспечения для них. В перспективе они надеются достичь квантового превосходства — демонстрации того, что квантовый компьютер может решать задачу, которая невыполнима для любого классического компьютера за разумное время.
Программный комплекс позволяет создавать и оптимизировать последовательности микроволновых импульсов, которые подаются на кубиты — квантовые аналоги битов, которые являются наименьшими единицами информации в квантовом компьютере. Эти импульсы определяют, какие квантовые операции будут выполнены над кубитами, а также как будет измерено их состояние. Программный комплекс также учитывает различные факторы, которые могут повлиять на точность и скорость квантовых вычислений, такие как нелинейность джозефсоновских переходов, дисперсия линий передачи, шумы и декогеренция.
Программный комплекс был протестирован на сверхпроводниковых кубитах-трансмонах, которые являются одним из самых распространенных типов кубитов в мире. Трансмон — разновидность зарядового кубита, который состоит из двух сверхпроводящих обкладок, разделенных тонким слоем диэлектрика. Трансмон имеет два основных состояния — ноль и единица, которые соответствуют разному количеству пар Купера (сверхпроводящих электронных пар) на обкладках. Трансмон отличается от зарядового кубита тем, что он менее чувствителен к шумам заряда за счет большой емкости обкладок.
С помощью программного комплекса удалось продемонстрировать высокую точность одно- и двухкубитных операций на трансмонах, а также реализовать простые квантовые алгоритмы, такие как алгоритм Дойча-Йожи и алгоритм Гровера. Эти алгоритмы показывают преимущества квантовых компьютеров над классическими компьютерами в некоторых задачах.
Алгоритм Дойча-Йожи является одним из таких примеров. Он позволяет определить, является ли заданная булева функция от n переменных постоянной или сбалансированной, то есть принимающей равное количество значений 0 и 1 для всех возможных наборов аргументов. Для этого алгоритму достаточно одного обращения к квантовому оракулу, который реализует функцию в виде унитарного преобразования над n+1 кубитами. При этом классическому алгоритму потребовалось бы 2^(n-1)+1 обращений к оракулу в худшем случае.
Алгоритм Дойча-Йожи работает следующим образом. На входе он имеет n+1 кубит, из которых n кубитов находятся в состоянии |0>, а один кубит в состоянии |1>. Затем на все кубиты применяется преобразование Адамара, которое переводит каждый кубит в суперпозицию состояний |0> и |1>. После этого на кубиты действует оракул, который меняет знак тех состояний, для которых функция равна 1. Наконец, на первые n кубитов снова применяется преобразование Адамара, а затем измеряется их состояние. Если функция постоянная, то вероятность получить все нули равна 1. Если функция сбалансированная, то вероятность получить все нули равна 0.
Алгоритм Дойча-Йожи демонстрирует, что квантовые компьютеры могут использовать параллелизм и интерференцию для решения задач эффективнее, чем классические компьютеры. Однако этот алгоритм не имеет большого практического значения, так как задача определения типа функции не является очень интересной или полезной. Кроме того, алгоритм требует идеальной когерентности и изоляции кубитов от шумов, что трудно достичь на практике.
Поэтому разработка более сложных и мощных квантовых алгоритмов является одним из актуальных направлений в области квантовых технологий. Российские ученые и инженеры продолжают работать над созданием сверхпроводниковых квантовых процессоров и развитием программного обеспечения для них. В перспективе они надеются достичь квантового превосходства — демонстрации того, что квантовый компьютер может решать задачу, которая невыполнима для любого классического компьютера за разумное время.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Обнаружен «призрачный» и совершенно неизвестный вид человечества
Эксперты говорят, что ветвь находилась… 40 000 лет в полной изоляции....

Наконец-то раскрыта тайна, на кого охотилась самая большая в истории акула
Надо сказать, что до этого ученые сильно ошибались по поводу меню мегалодона....

На орбите Венеры может скрываться очень серьезная угроза для Земли
Самое опасное, что ее почти невозможно увидеть с поверхности нашей планеты....

Разгадка тайны кругов на полях близка? Исследование 2025 года связывает аномалию со вспышками на Солнце
Геология, плазма, солнечный ветер и НЛО помогли объяснить феномен....

Вулканологи научились понимать тайные сигналы деревьев, предсказывающие извержения
Оказалось, что природный способ работает лучше любых спецприборов....

«Мусор» из глубин Барсучьего логова оказался ценнейшими артефактами таинственного индейского племени
Археологи говорят: в горах Герреро будет еще масса сенсационных открытий....

США грозит «астероидная слепота»: NASA не будет видеть особо опасные объекты
Были надежды на новый телескоп, но их в буквальном смысле убил новый президент....