Технология «орган на чипе» в итоге «уволит» подопытных животных
Инженеры из Университета Нового Южного Уэльса (UNSW) в Сиднее создали гибкие электронные системы из ультратонких материалов, похожих на кожу. Исследовательская группа Хоанг-Фуонг Фана из Школы машиностроения и производственной инженерии UNSW опубликовала свои результаты в журнале Advanced Functional Materials («Передовые функциональные материалы»).
Учёные использовали технику литографии для печати крошечных рисунков, чтобы изготовить полупроводники на тончайших гибких наномембранах с полимерной подложкой. Такие полупроводники пригодны, например, для стимуляции органов, даже если их растянуть или скрутить любым мыслимым образом. Результат может стать важным компонентом технологии «орган на чипе». То есть передовой подход позволит создавать миниатюрные версии человеческих органов на крошечных чипах. Воспроизводя функции и структуры органов, учёные смогут тестировать действие лекарств или наблюдать течение болезней точнее и эффективнее. Что немаловажно, в итоге можно будет обходиться без опытов на животных.
— Тхань Нхо До, главный исследователь проекта.
Исследователи намерены продолжить работу по дальнейшему совершенствованию устройства и интегрировать дополнительные компоненты, в том числе беспроводную связь. Они полагают, что благодаря их успехам первая медицинская электроника на основе наномембран может появиться на рынке в течение трёх-пяти лет.
Что касается использования технологии в носимых системах мониторинга здоровья, то одной из них может стать специальный рукав. Он бы замерял воздействие солнца в течение дня и передавал сигналы тревоги для профилактики рака кожи.
Учёные из UNSW также предполагают, что их новый материал после доработки пригодится для имплантируемых биомедицинских устройств, в которых электрическая система отследит сигналы нейронов, чтобы затем повлиять на них. Хотя подобное медицинское устройство, скорее всего, будет доступно лет через 10, австралийцы уже планируют помочь эпилептикам. Перед приступом мозг посылает необычные сигналы, которые действуют как пусковой механизм. Если удастся создать имплантируемое электронное устройство, способное обнаруживать признаки приближающегося припадка, то возможна и электрическая стимуляция для борьбы с приступом.
Одна из ключевых проблем, которую необходимо преодолеть для выпуска имплантируемых устройств — это вопрос питания. Так что исследователи из UNSW также пытаются разработать систему магнитно-резонансной связи. Если её совместить с электронными мембранами, то возможна беспроводная передачи энергии через живые ткани с помощью внешней антенны.
Учёные использовали технику литографии для печати крошечных рисунков, чтобы изготовить полупроводники на тончайших гибких наномембранах с полимерной подложкой. Такие полупроводники пригодны, например, для стимуляции органов, даже если их растянуть или скрутить любым мыслимым образом. Результат может стать важным компонентом технологии «орган на чипе». То есть передовой подход позволит создавать миниатюрные версии человеческих органов на крошечных чипах. Воспроизводя функции и структуры органов, учёные смогут тестировать действие лекарств или наблюдать течение болезней точнее и эффективнее. Что немаловажно, в итоге можно будет обходиться без опытов на животных.
Мы используем материал, который, в отличие от традиционных полупроводников, не поглощает видимый свет. Это означает, что учёные могут наблюдать «орган на чипе» через микроскоп. Электронная система на мембране также позволяет собирать много данных при наблюдениях за реакциями искусственного органа во время тестирования
— Тхань Нхо До, главный исследователь проекта.
Исследователи намерены продолжить работу по дальнейшему совершенствованию устройства и интегрировать дополнительные компоненты, в том числе беспроводную связь. Они полагают, что благодаря их успехам первая медицинская электроника на основе наномембран может появиться на рынке в течение трёх-пяти лет.
Что касается использования технологии в носимых системах мониторинга здоровья, то одной из них может стать специальный рукав. Он бы замерял воздействие солнца в течение дня и передавал сигналы тревоги для профилактики рака кожи.
Учёные из UNSW также предполагают, что их новый материал после доработки пригодится для имплантируемых биомедицинских устройств, в которых электрическая система отследит сигналы нейронов, чтобы затем повлиять на них. Хотя подобное медицинское устройство, скорее всего, будет доступно лет через 10, австралийцы уже планируют помочь эпилептикам. Перед приступом мозг посылает необычные сигналы, которые действуют как пусковой механизм. Если удастся создать имплантируемое электронное устройство, способное обнаруживать признаки приближающегося припадка, то возможна и электрическая стимуляция для борьбы с приступом.
Одна из ключевых проблем, которую необходимо преодолеть для выпуска имплантируемых устройств — это вопрос питания. Так что исследователи из UNSW также пытаются разработать систему магнитно-резонансной связи. Если её совместить с электронными мембранами, то возможна беспроводная передачи энергии через живые ткани с помощью внешней антенны.
- Дмитрий Ладыгин
- phys.org
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Парадокс Великой Зеленой стены: Китай посадил 78 миллиардов новых деревьев, но климат стал только хуже. Как так вышло?
Ученые назвали причины, почему самый грандиозный экологический проект за всю историю в итоге обернулся головной болью для миллионов китайских граждан...
Марс отменяется: три причины, почему российские эксперты ставят крест на Красной планете
Почему пробирка с Марса опаснее любого астероида, как галактические лучи «взрывают» мозг и при чем тут Китай? Честный разбор рисков от Российской академии наук...
«Не повторяйте наших ошибок!» 100 лет борьбы с лесными пожарами обернулись катастрофой для США
Эксперты рассказали, почему, казалось бы, проверенная тактика только усугубила ситуацию с лесным огнем...
Темная сторона Рима: выяснилось, что Империя веками «выкачивала» здоровье из покоренных народов
Новые находки заставили ученых признать: для простых людей римский «прогресс» был скорее приговором, чем спасением. Но почему же так вышло?...
Мегамонстры с 7-го этажа: в древних океанах шла такая война хищников, где у современных косаток не было бы ни единого шанса
Ученые рассказали, куда исчезли «боги» мезозойских морей и почему сейчас их существование было бы невозможно...
ДНК 4000-летней овцы оказалось ключом к древней тайне, стоившей жизни миллионам
Поразительно, но археологи нашли штамм древней чумы, кошмаривший всю Евразию, в самом таинственном российском городе — Аркаиме. Почему же так получилось?...
Супертелескоп James Webb только запутал ученых, а планета-«близнец» Земли стала еще загадочнее
Эксперты рассказали, почему самый мощный телескоп в истории не смог разобраться с атмосферой TRAPPIST-1e. Аппарат не виноват. Но тогда кто?...
Встречи с неведомым: завершаем чтение дневников разведчика и писателя Владимира Арсеньева
Часть третья: таинственный огонь в лесу, свет из облаков, призрак в тумане и странный дым на море...
Первая «чернокожая британка» оказалась белой: новое исследование заставило историков полностью пересмотреть портрет женщины из Бичи-Хед
Почему ученые так сильно ошиблись с ее внешностью? И стоит ли после этого доверять реконструкциям по ДНК?...
Новое исследование показало: если бы не этот «российский ген», древние люди вряд ли бы заселили Америку
Ученые рассказали, почему Алтай в ДНК — это главный секрет феноменального здоровья индейцев...
Мощнее леса в десятки раз: в ЮАР нашли «живые камни», которые выкачивают CO₂ с бешеной скоростью
Микробиалиты могли бы спасти Землю от потепления, но у этих «каменных насосов» есть один нюанс...
20-летнее наблюдение со спутников «сломало климат»: Теперь ученым придется полностью менять все теории
Зато теперь понятно, почему в двух близких городах могут быть... разные времена года...
Грядет научный прорыв: Зачем в последние годы ученые по всему миру создают очень странные компьютеры?
Новые аппараты… не просто живые: они стирают различия между ЭВМ и человеческим мозгом...