Двухслойный графен из МФТИ: материал будущего для детектирования терагерцового излучения
Терагерцовое излучение — электромагнитное излучение, частота которого находится между инфракрасным и микроволновым диапазонами. Это излучение имеет большой потенциал для применения в различных областях науки и техники, таких как биомедицина, безопасность, коммуникации, астрономия и другие. Однако для реализации этих возможностей необходимо разработать эффективные источники и детекторы терагерцового излучения, которые могут работать при разных температурах и частотах.
Ученые из Московского физико-технического института (МФТИ) разработали новый тип детектора терагерцового излучения на основе двухслойного графена. Этот детектор обладает рекордной чувствительностью при криогенных температурах и достаточной чувствительностью при комнатной температуре. Кроме того, он имеет простую конструкцию и низкую стоимость. Это открытие открывает новые перспективы для применения терагерцового излучения в различных областях науки, техники и медицины. Статья с результатами исследования опубликована в журнале Nature Communications.
Графен — двумерный материал из одноатомного слоя углерода, который обладает уникальными электронными, оптическими и механическими свойствами. Графен является одним из лучших проводников электричества и тепла, имеет высокую прозрачность для видимого и инфракрасного света, а также способен взаимодействовать с терагерцовым излучением.
Двухслойный графен — это структура из двух слоев углерода, сдвинутых друг относительно друга на небольшой угол. Такая конфигурация позволяет создать небольшую ширину запрещенной зоны — энергетический интервал между зонами проводимости и валентности в кристаллической решетке материала. Запрещенная зона определяет способность материала проводить электричество: чем она больше, тем хуже проводник; чем меньше или отсутствует (как в однослойном графене), тем лучше проводник. Двухслойный графен с небольшой запрещенной зоной оказался «золотой серединой» между однослойным графеном и классическими объемными полупроводниками.
Ученые из МФТИ изготовили детектор на основе двухслойного графена и подвергли его испытаниям при разных температурах и частотах терагерцового излучения. Они обнаружили, что детектор обладает рекордной чувствительностью при криогенных температурах (около -260 °C), превосходя по этому параметру коммерческие болометры на полупроводниках и сверхпроводниках. При комнатной температуре чувствительность детектора снижается, но все еще остается достаточной для практических приложений. Ученые также выяснили, что чувствительность детектора зависит от угла сдвига между слоями графена: чем он больше, тем лучше детектор работает.
Детектор на основе двухслойного графена имеет ряд преимуществ перед существующими детекторами терагерцового излучения. Во-первых, он имеет высокую чувствительность при любых температурах, что позволяет использовать его без специального охлаждения. Во-вторых, он имеет простую конструкцию и низкую стоимость, что делает его доступным для широкого применения. В-третьих, он имеет широкий динамический диапазон и может работать при разных частотах терагерцового излучения.
В перспективе терагерцовое излучение может быть использовано для беспроводной передачи данных сверхвысокой скорости, для сканирования объектов без повреждения их структуры, для диагностики и лечения некоторых заболеваний, для изучения космических объектов и явлений. Для этого необходимо продолжать развивать технологии генерации и детектирования терагерцового излучения, а также исследовать его взаимодействие с различными материалами и биологическими системами.
Ученые из Московского физико-технического института (МФТИ) разработали новый тип детектора терагерцового излучения на основе двухслойного графена. Этот детектор обладает рекордной чувствительностью при криогенных температурах и достаточной чувствительностью при комнатной температуре. Кроме того, он имеет простую конструкцию и низкую стоимость. Это открытие открывает новые перспективы для применения терагерцового излучения в различных областях науки, техники и медицины. Статья с результатами исследования опубликована в журнале Nature Communications.
Графен — двумерный материал из одноатомного слоя углерода, который обладает уникальными электронными, оптическими и механическими свойствами. Графен является одним из лучших проводников электричества и тепла, имеет высокую прозрачность для видимого и инфракрасного света, а также способен взаимодействовать с терагерцовым излучением.
Двухслойный графен — это структура из двух слоев углерода, сдвинутых друг относительно друга на небольшой угол. Такая конфигурация позволяет создать небольшую ширину запрещенной зоны — энергетический интервал между зонами проводимости и валентности в кристаллической решетке материала. Запрещенная зона определяет способность материала проводить электричество: чем она больше, тем хуже проводник; чем меньше или отсутствует (как в однослойном графене), тем лучше проводник. Двухслойный графен с небольшой запрещенной зоной оказался «золотой серединой» между однослойным графеном и классическими объемными полупроводниками.
Ученые из МФТИ изготовили детектор на основе двухслойного графена и подвергли его испытаниям при разных температурах и частотах терагерцового излучения. Они обнаружили, что детектор обладает рекордной чувствительностью при криогенных температурах (около -260 °C), превосходя по этому параметру коммерческие болометры на полупроводниках и сверхпроводниках. При комнатной температуре чувствительность детектора снижается, но все еще остается достаточной для практических приложений. Ученые также выяснили, что чувствительность детектора зависит от угла сдвига между слоями графена: чем он больше, тем лучше детектор работает.
Детектор на основе двухслойного графена имеет ряд преимуществ перед существующими детекторами терагерцового излучения. Во-первых, он имеет высокую чувствительность при любых температурах, что позволяет использовать его без специального охлаждения. Во-вторых, он имеет простую конструкцию и низкую стоимость, что делает его доступным для широкого применения. В-третьих, он имеет широкий динамический диапазон и может работать при разных частотах терагерцового излучения.
В перспективе терагерцовое излучение может быть использовано для беспроводной передачи данных сверхвысокой скорости, для сканирования объектов без повреждения их структуры, для диагностики и лечения некоторых заболеваний, для изучения космических объектов и явлений. Для этого необходимо продолжать развивать технологии генерации и детектирования терагерцового излучения, а также исследовать его взаимодействие с различными материалами и биологическими системами.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Эксперты говорят: изобретение ученых из Перми решает одну из самых серьезных и опасных проблем в современной авиации
Американцы потратили на это десятки лет и миллиарды долларов, но открытие сделали в России...
ДНК из ниоткуда: 6000-летние останки в Колумбии ни с кем совпадают по генам. Вообще.
Если у этих людей нет ни предков, ни потомков, то кто они такие?...
Египетская «Зона 51»: Почему власти полностью засекретили «четвертую пирамиду»?
С 60-х годов ХХ века на объект Завиет-эль-Эриан не попал ни один ученый. Что скрывают военные за колючей проволокой?...
Секретные спутники Илона Маска заподозрили в использовании запрещенных сигналов
Что это значит для России и чем могут ответить наши военные?...
Ученые обнаружили на Кавказе «ужасного» хищника, способного дробить черепа с одного укуса
Почему же 400-килограммовый монстр, побеждавший медведей и саблезубых тигров, все-таки исчез с лица планеты?...
«Черный ящик» раскрыл тайну летучей мыши, пожирающей птиц прямо в полете
Ученые совершенно не ожидали, что рукокрылый властелин ночного неба по свирепости и охотничьему мастерству даст фору даже соколам...
Нападение акул, считавшихся абсолютно безобидными, вызвало шок у морских биологов
Кто виноват в этой ужасной трагедии? И почему эксперты говорят, что это только начало?...
2700 дней понадобилось ученым, чтобы, наконец, раскрыть главную тайну гигантских скатов
Оказалось, что манты ныряют на 1250-метровую глубину вовсе не за едой и не спасаясь от хищников...
В ближайшие 100 лет Юпитер «выстрелит» в Землю как минимум 342 раза
Российские ученые рассчитали: ближайшее «прицеливание» состоится уже 2031 году. Что вообще нам ожидать?...
Мог ли великий художник Клод Моне видеть в ультрафиолетовом спектре, как пчела?
Историки уверены: после операции на глазах с французским живописцем стали происходит очень странные вещи...
Ученые говорят: вся жизнь подчиняется одному секретному коду
Но почему это древнее ископаемое отказалось следовать ему?...
Затонувшие корабли с сокровищами у берегов Китая открывают поразительные факты о Великом морском шелковом пути
Да, это лонгрид! Но после его прочтения ваш взгляд на историю Китая изменится самым коренным образом...
Активность нечеловеческого разума вблизи ядерных объектов США, СССР и Великобритании впервые получила научные доказательства
Критики не смогли опровергнуть работу шведских ученых о странных искусственных аномалиях на орбите...