
Двухслойный графен из МФТИ: материал будущего для детектирования терагерцового излучения
Терагерцовое излучение — электромагнитное излучение, частота которого находится между инфракрасным и микроволновым диапазонами. Это излучение имеет большой потенциал для применения в различных областях науки и техники, таких как биомедицина, безопасность, коммуникации, астрономия и другие. Однако для реализации этих возможностей необходимо разработать эффективные источники и детекторы терагерцового излучения, которые могут работать при разных температурах и частотах.
Ученые из Московского физико-технического института (МФТИ) разработали новый тип детектора терагерцового излучения на основе двухслойного графена. Этот детектор обладает рекордной чувствительностью при криогенных температурах и достаточной чувствительностью при комнатной температуре. Кроме того, он имеет простую конструкцию и низкую стоимость. Это открытие открывает новые перспективы для применения терагерцового излучения в различных областях науки, техники и медицины. Статья с результатами исследования опубликована в журнале Nature Communications.
Графен — двумерный материал из одноатомного слоя углерода, который обладает уникальными электронными, оптическими и механическими свойствами. Графен является одним из лучших проводников электричества и тепла, имеет высокую прозрачность для видимого и инфракрасного света, а также способен взаимодействовать с терагерцовым излучением.
Двухслойный графен — это структура из двух слоев углерода, сдвинутых друг относительно друга на небольшой угол. Такая конфигурация позволяет создать небольшую ширину запрещенной зоны — энергетический интервал между зонами проводимости и валентности в кристаллической решетке материала. Запрещенная зона определяет способность материала проводить электричество: чем она больше, тем хуже проводник; чем меньше или отсутствует (как в однослойном графене), тем лучше проводник. Двухслойный графен с небольшой запрещенной зоной оказался «золотой серединой» между однослойным графеном и классическими объемными полупроводниками.
Ученые из МФТИ изготовили детектор на основе двухслойного графена и подвергли его испытаниям при разных температурах и частотах терагерцового излучения. Они обнаружили, что детектор обладает рекордной чувствительностью при криогенных температурах (около -260 °C), превосходя по этому параметру коммерческие болометры на полупроводниках и сверхпроводниках. При комнатной температуре чувствительность детектора снижается, но все еще остается достаточной для практических приложений. Ученые также выяснили, что чувствительность детектора зависит от угла сдвига между слоями графена: чем он больше, тем лучше детектор работает.
Детектор на основе двухслойного графена имеет ряд преимуществ перед существующими детекторами терагерцового излучения. Во-первых, он имеет высокую чувствительность при любых температурах, что позволяет использовать его без специального охлаждения. Во-вторых, он имеет простую конструкцию и низкую стоимость, что делает его доступным для широкого применения. В-третьих, он имеет широкий динамический диапазон и может работать при разных частотах терагерцового излучения.
В перспективе терагерцовое излучение может быть использовано для беспроводной передачи данных сверхвысокой скорости, для сканирования объектов без повреждения их структуры, для диагностики и лечения некоторых заболеваний, для изучения космических объектов и явлений. Для этого необходимо продолжать развивать технологии генерации и детектирования терагерцового излучения, а также исследовать его взаимодействие с различными материалами и биологическими системами.
Ученые из Московского физико-технического института (МФТИ) разработали новый тип детектора терагерцового излучения на основе двухслойного графена. Этот детектор обладает рекордной чувствительностью при криогенных температурах и достаточной чувствительностью при комнатной температуре. Кроме того, он имеет простую конструкцию и низкую стоимость. Это открытие открывает новые перспективы для применения терагерцового излучения в различных областях науки, техники и медицины. Статья с результатами исследования опубликована в журнале Nature Communications.
Графен — двумерный материал из одноатомного слоя углерода, который обладает уникальными электронными, оптическими и механическими свойствами. Графен является одним из лучших проводников электричества и тепла, имеет высокую прозрачность для видимого и инфракрасного света, а также способен взаимодействовать с терагерцовым излучением.
Двухслойный графен — это структура из двух слоев углерода, сдвинутых друг относительно друга на небольшой угол. Такая конфигурация позволяет создать небольшую ширину запрещенной зоны — энергетический интервал между зонами проводимости и валентности в кристаллической решетке материала. Запрещенная зона определяет способность материала проводить электричество: чем она больше, тем хуже проводник; чем меньше или отсутствует (как в однослойном графене), тем лучше проводник. Двухслойный графен с небольшой запрещенной зоной оказался «золотой серединой» между однослойным графеном и классическими объемными полупроводниками.
Ученые из МФТИ изготовили детектор на основе двухслойного графена и подвергли его испытаниям при разных температурах и частотах терагерцового излучения. Они обнаружили, что детектор обладает рекордной чувствительностью при криогенных температурах (около -260 °C), превосходя по этому параметру коммерческие болометры на полупроводниках и сверхпроводниках. При комнатной температуре чувствительность детектора снижается, но все еще остается достаточной для практических приложений. Ученые также выяснили, что чувствительность детектора зависит от угла сдвига между слоями графена: чем он больше, тем лучше детектор работает.
Детектор на основе двухслойного графена имеет ряд преимуществ перед существующими детекторами терагерцового излучения. Во-первых, он имеет высокую чувствительность при любых температурах, что позволяет использовать его без специального охлаждения. Во-вторых, он имеет простую конструкцию и низкую стоимость, что делает его доступным для широкого применения. В-третьих, он имеет широкий динамический диапазон и может работать при разных частотах терагерцового излучения.
В перспективе терагерцовое излучение может быть использовано для беспроводной передачи данных сверхвысокой скорости, для сканирования объектов без повреждения их структуры, для диагностики и лечения некоторых заболеваний, для изучения космических объектов и явлений. Для этого необходимо продолжать развивать технологии генерации и детектирования терагерцового излучения, а также исследовать его взаимодействие с различными материалами и биологическими системами.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Выяснилось, что суша вокруг Аральского моря... стремительно поднимается
И ученые сумели разгадать эту удивительную загадку природы....

В каменных гробницах древней Ирландии похоронены вовсе не те, о ком думали ученые
Генетический анализ переписывает историю неолита....

Тайна последнего Папы: сбудется ли пророчество XII века?
Три Петра, один престол: что об этом говорят историки и сам Ватикан?...

Что 220 дней в космосе сделали с 70-летним мужчиной?
Старейший астронавт NASA возвратился на Землю....

Застукали: антарктического гигантского кальмара впервые запечатлели в естественной среде
Прошёл век после открытия вида....

Невероятная история единственного человека, которому удалось проникнуть в Зону 51
Джерри Фримен не только выбрался оттуда, но и рассказал, что увидел....

«Двух монстров» засняли на камеру в знаменитом шотландском озере
Ученые не верят, но кого тогда видел очевидец?...

Американские военные приступили к строительству орбитального авианосца
Пентагон говорит, что это исключительно ради мира. Но эксперты прогнозируют военную эскалацию в космосе....

Оказывается, римляне периодически врали о своих победах в исторических хрониках
Недавно археологи обнаружили в Судане очередное яркое тому подтверждение....

Бетон в туннелях для автотранспорта гниёт удивительно быстро
Казалось бы прочный материал гложут микробы....

Китай испытал новейшую водородную, но не ядерную бомбу
Кто-то говорит, что это инновация, а кто-то, что такое уже было в СССР....

Ученые заставили человеческий глаз видеть совершенно новый цвет
Он называется оло, и его практически не описать словами....

Шимпанзе устраивают пьяные вечеринки
Похоже, у человека и близких видов это в крови....

Вороны еще раз подтвердили свою гениальность
Исследование показало, что эти птицы отлично распознают… геометрические фигуры....

Ученые доказали: вода на Земле не из космоса, а своя собственная
Она зародилась «автоматически». И это в корне меняет теорию жизни во Вселенной....

Нюхали чужие футболки: женщины полагаются на запах при выборе друзей
Наука требует странных опытов....