Робота-пчелу с трудом научили летать во всех направлениях
Исследователи из Университета штата Вашингтон (WSU) разработали роботизированную пчелу, которая может летать «по-всякому». Благодаря четырём крыльям из углеродного волокна и лавсана, а также четырём приводам для управления каждым крылом, прототип Bee ++ стал первым стабильно летающим во всех направлениях роботом. Робопчела даже способна на такое хитрое движение, которое авиаторы называют рысканием. При этом у Bee ++ шесть полноценных типов воздушных манёвров, как у настоящих летающих насекомых.
Исследователи сообщили об успехе в журнале IEEE Transactions on Robotics. Достижение состоялось под руководством Нестора Переса-Арансибиа, профессора в Школе механики и материаловедения WSU.
Перес-Арансибиа рассказал, что учёные пытались разработать искусственных летающих насекомых вот уже более 30 лет. Естественно, не ради чистой науки. Робопчёл можно будет использовать для искусственного опыления, поисково-спасательных работ в труднодоступных местах, биологических исследованиях и для мониторинга окружающей среды, в том числе в опасных условиях.
Но для того, чтобы крошечные роботы взлетали и приземлялись, потребовалась разработка контроллеров, которые «думают», как мозг реального насекомого.
Первоначально инженеры создали робота-пчелу с двумя крыльями, но он был неуклюж. А в 2019 году Перес-Арансибиа и двое его аспирантов впервые построили достаточно лёгкого для взлёта четырёхкрылого робота. Одной из первых задач стали два манёвра, известных как тангаж (качка) и крен. Для этого требовалось создавать крутящий момент, который вращает робота вокруг его двух основных горизонтальных осей. Ради тангажа исследователи научили устройство махать передними крыльями иначе, чем задними. А для крена — правыми крыльями махать иначе, чем левыми.
Но также очень важно было контролировать такой сложный воздушный трюк, как рыскание — это угловые движения воздушного судна относительно вертикальной оси. Без этого роботы выходят из-под контроля, не в состоянии задерживаться в нужной точке, а затем падают. Иными словами, если настоящая пчела не сможет контролировать своё рыскание, то будет без толку крутиться вокруг цветка, а нектара не наберёт.
В числе необходимых лётных манёвров для нормальной работы роботов-летунов — также уклонение и следование за объектом. Профессор рассказал, что изобретатели осознавали теорию, но в течение многих лет им не удавалось осуществить рыскание на практике.
Чтобы заставить робота вращаться нужным образом, исследователи взяли пример с насекомых и приделали крылья так, чтобы они махали в наклонной плоскости. А также увеличили количество взмахов крыльев своего робота со 100 раз в секунду до 160 раз.
— Нестор Перес-Арансибиа, профессор в Школе механики и материаловедения WSU.
При весе в 95 миллиграммов и размахе крыльев в 33 мм Bee ++ по-прежнему крупнее настоящих пчёл, которые весят около 10 мг. И в отличие от настоящих насекомых робот может летать автономно только около пяти минут, так что для опытов он запитан от кабеля.
Исследователи также заняты разработкой других роботов-насекомых, включая ползающих и водомерок.
Исследователи сообщили об успехе в журнале IEEE Transactions on Robotics. Достижение состоялось под руководством Нестора Переса-Арансибиа, профессора в Школе механики и материаловедения WSU.
Перес-Арансибиа рассказал, что учёные пытались разработать искусственных летающих насекомых вот уже более 30 лет. Естественно, не ради чистой науки. Робопчёл можно будет использовать для искусственного опыления, поисково-спасательных работ в труднодоступных местах, биологических исследованиях и для мониторинга окружающей среды, в том числе в опасных условиях.
Но для того, чтобы крошечные роботы взлетали и приземлялись, потребовалась разработка контроллеров, которые «думают», как мозг реального насекомого.
Первоначально инженеры создали робота-пчелу с двумя крыльями, но он был неуклюж. А в 2019 году Перес-Арансибиа и двое его аспирантов впервые построили достаточно лёгкого для взлёта четырёхкрылого робота. Одной из первых задач стали два манёвра, известных как тангаж (качка) и крен. Для этого требовалось создавать крутящий момент, который вращает робота вокруг его двух основных горизонтальных осей. Ради тангажа исследователи научили устройство махать передними крыльями иначе, чем задними. А для крена — правыми крыльями махать иначе, чем левыми.
Но также очень важно было контролировать такой сложный воздушный трюк, как рыскание — это угловые движения воздушного судна относительно вертикальной оси. Без этого роботы выходят из-под контроля, не в состоянии задерживаться в нужной точке, а затем падают. Иными словами, если настоящая пчела не сможет контролировать своё рыскание, то будет без толку крутиться вокруг цветка, а нектара не наберёт.
В числе необходимых лётных манёвров для нормальной работы роботов-летунов — также уклонение и следование за объектом. Профессор рассказал, что изобретатели осознавали теорию, но в течение многих лет им не удавалось осуществить рыскание на практике.
Чтобы заставить робота вращаться нужным образом, исследователи взяли пример с насекомых и приделали крылья так, чтобы они махали в наклонной плоскости. А также увеличили количество взмахов крыльев своего робота со 100 раз в секунду до 160 раз.
Но физический дизайн робота был только частью решения. Мы также изобрели новый контроллер — это «мозг», который говорит роботу, что делать
— Нестор Перес-Арансибиа, профессор в Школе механики и материаловедения WSU.
При весе в 95 миллиграммов и размахе крыльев в 33 мм Bee ++ по-прежнему крупнее настоящих пчёл, которые весят около 10 мг. И в отличие от настоящих насекомых робот может летать автономно только около пяти минут, так что для опытов он запитан от кабеля.
Исследователи также заняты разработкой других роботов-насекомых, включая ползающих и водомерок.
- Дмитрий Ладыгин
- youtu.be/m9lLO1QpdcE
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Российские ученые «поймали за руку» Илона Маска
Они доказали, что его ракеты пробивают дыры в атмосфере....
Удар неизбежен?
Куски взорванного астероида нацелились на Землю....
Западная Европа и США готовятся к худшему
Новая угроза ожидается из Латинской Америки....
«Титаник» разваливается прямо на глазах
Кто же ускоряет гибель легендарного корабля: люди или природа?...
NASA обнаружило таинственное энергетическое поле вокруг Земли
Оно уникально, и, похоже, благодаря нему на планете… появилась жизнь....
Starliner Boeing снова в новостях: теперь там что-то жутко стучит и лязгает
NASA придумывает объяснения, а бывший командир МКС говорит, что это не к добру....
Спасение человечества находится на дне Северного Ледовитого океана
Финские ученые уверены в этом на 100%....
Прорыв или кошмар? Искусственный интеллект стал изменять собственный код
Ученые говорят: ничего страшного. Но так ли это на самом деле?...
Форресты Гампы отменяются
Американские ученые «взломали» код аутизма....
Космический корабль BepiColombo невероятно близко подлетел к Меркурию
Свежие снимки рябой планеты удалось сделать благодаря возникшим в полёте неполадкам....
Сосуд из найденного в Шотландии клада викингов оказался иранским
Никто не ожидал, что сокровище прибыло из столь отдаленных мест....
Безглазая смерть чует тьму: как именно грибок превращает мух в зомби-некрофилов
Главное случается ночью....
Новый метод поможет раскрыть секс-преступления во много раз быстрее
Открытие ускорит проверку улик....
Азиаты оккупируют Британию: сначала мигранты, теперь желтоногие шершни
Экологи бьют тревогу и массово рассылают методички населению....
Морская жаба, летающие макаронные монстры и осьминог-призрак Каспер
Шокирующие находки на подводном хребте Наска....
Роботы и 3D-печать сделали бетон прочнее благодаря особой структуре
Имитируя природу, бетон можно уложить так, чтобы повысить прочность на 63%....