
Робота-пчелу с трудом научили летать во всех направлениях
Исследователи из Университета штата Вашингтон (WSU) разработали роботизированную пчелу, которая может летать «по-всякому». Благодаря четырём крыльям из углеродного волокна и лавсана, а также четырём приводам для управления каждым крылом, прототип Bee ++ стал первым стабильно летающим во всех направлениях роботом. Робопчела даже способна на такое хитрое движение, которое авиаторы называют рысканием. При этом у Bee ++ шесть полноценных типов воздушных манёвров, как у настоящих летающих насекомых.
Исследователи сообщили об успехе в журнале IEEE Transactions on Robotics. Достижение состоялось под руководством Нестора Переса-Арансибиа, профессора в Школе механики и материаловедения WSU.
Перес-Арансибиа рассказал, что учёные пытались разработать искусственных летающих насекомых вот уже более 30 лет. Естественно, не ради чистой науки. Робопчёл можно будет использовать для искусственного опыления, поисково-спасательных работ в труднодоступных местах, биологических исследованиях и для мониторинга окружающей среды, в том числе в опасных условиях.
Но для того, чтобы крошечные роботы взлетали и приземлялись, потребовалась разработка контроллеров, которые «думают», как мозг реального насекомого.
Первоначально инженеры создали робота-пчелу с двумя крыльями, но он был неуклюж. А в 2019 году Перес-Арансибиа и двое его аспирантов впервые построили достаточно лёгкого для взлёта четырёхкрылого робота. Одной из первых задач стали два манёвра, известных как тангаж (качка) и крен. Для этого требовалось создавать крутящий момент, который вращает робота вокруг его двух основных горизонтальных осей. Ради тангажа исследователи научили устройство махать передними крыльями иначе, чем задними. А для крена — правыми крыльями махать иначе, чем левыми.
Но также очень важно было контролировать такой сложный воздушный трюк, как рыскание — это угловые движения воздушного судна относительно вертикальной оси. Без этого роботы выходят из-под контроля, не в состоянии задерживаться в нужной точке, а затем падают. Иными словами, если настоящая пчела не сможет контролировать своё рыскание, то будет без толку крутиться вокруг цветка, а нектара не наберёт.
В числе необходимых лётных манёвров для нормальной работы роботов-летунов — также уклонение и следование за объектом. Профессор рассказал, что изобретатели осознавали теорию, но в течение многих лет им не удавалось осуществить рыскание на практике.
Чтобы заставить робота вращаться нужным образом, исследователи взяли пример с насекомых и приделали крылья так, чтобы они махали в наклонной плоскости. А также увеличили количество взмахов крыльев своего робота со 100 раз в секунду до 160 раз.
— Нестор Перес-Арансибиа, профессор в Школе механики и материаловедения WSU.
При весе в 95 миллиграммов и размахе крыльев в 33 мм Bee ++ по-прежнему крупнее настоящих пчёл, которые весят около 10 мг. И в отличие от настоящих насекомых робот может летать автономно только около пяти минут, так что для опытов он запитан от кабеля.
Исследователи также заняты разработкой других роботов-насекомых, включая ползающих и водомерок.
Исследователи сообщили об успехе в журнале IEEE Transactions on Robotics. Достижение состоялось под руководством Нестора Переса-Арансибиа, профессора в Школе механики и материаловедения WSU.
Перес-Арансибиа рассказал, что учёные пытались разработать искусственных летающих насекомых вот уже более 30 лет. Естественно, не ради чистой науки. Робопчёл можно будет использовать для искусственного опыления, поисково-спасательных работ в труднодоступных местах, биологических исследованиях и для мониторинга окружающей среды, в том числе в опасных условиях.
Но для того, чтобы крошечные роботы взлетали и приземлялись, потребовалась разработка контроллеров, которые «думают», как мозг реального насекомого.
Первоначально инженеры создали робота-пчелу с двумя крыльями, но он был неуклюж. А в 2019 году Перес-Арансибиа и двое его аспирантов впервые построили достаточно лёгкого для взлёта четырёхкрылого робота. Одной из первых задач стали два манёвра, известных как тангаж (качка) и крен. Для этого требовалось создавать крутящий момент, который вращает робота вокруг его двух основных горизонтальных осей. Ради тангажа исследователи научили устройство махать передними крыльями иначе, чем задними. А для крена — правыми крыльями махать иначе, чем левыми.
Но также очень важно было контролировать такой сложный воздушный трюк, как рыскание — это угловые движения воздушного судна относительно вертикальной оси. Без этого роботы выходят из-под контроля, не в состоянии задерживаться в нужной точке, а затем падают. Иными словами, если настоящая пчела не сможет контролировать своё рыскание, то будет без толку крутиться вокруг цветка, а нектара не наберёт.
В числе необходимых лётных манёвров для нормальной работы роботов-летунов — также уклонение и следование за объектом. Профессор рассказал, что изобретатели осознавали теорию, но в течение многих лет им не удавалось осуществить рыскание на практике.
Чтобы заставить робота вращаться нужным образом, исследователи взяли пример с насекомых и приделали крылья так, чтобы они махали в наклонной плоскости. А также увеличили количество взмахов крыльев своего робота со 100 раз в секунду до 160 раз.
Но физический дизайн робота был только частью решения. Мы также изобрели новый контроллер — это «мозг», который говорит роботу, что делать
— Нестор Перес-Арансибиа, профессор в Школе механики и материаловедения WSU.
При весе в 95 миллиграммов и размахе крыльев в 33 мм Bee ++ по-прежнему крупнее настоящих пчёл, которые весят около 10 мг. И в отличие от настоящих насекомых робот может летать автономно только около пяти минут, так что для опытов он запитан от кабеля.
Исследователи также заняты разработкой других роботов-насекомых, включая ползающих и водомерок.
- Дмитрий Ладыгин
- youtu.be/m9lLO1QpdcE
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Аргентинские ученые предложили неожиданную разгадку тайны Антикитерского механизма
Возможно, он постоянно «зависал», как старый компьютер. Или был вообще… игрушкой....

Еще раз о ядерной войне на Марсе
Гипотетический конфликт на Красной планете не дает покоя некоторым ученым....

В мозгах спецназовцев обнаружились скрытые аномалии
Новейшее исследование показало, что обычный МРТ вообще не видит некоторые травмы головы....

Причина необъяснимых нападений морских львов на людей наконец-то раскрыта
Все дело в редком токсине, который заполонил прибрежные воды Калифорнии....

Ужасное наводнение создало Средиземное море всего за несколько месяцев
Потоп мчался со скоростью 115 километров в час....

Пока мир тонет в песках, эта пустыня стремительно зеленеет!
Ученые рассказали, почему Великая индийская пустыня стала на 38% зеленее всего за 20 лет....

Властелины огня: как древние люди поддерживали пламя в самые холодные времена
Основным топливом была древесина ели....

Термоядерный двигатель доставит людей до Марса всего за три месяца
Новая эра космических исследований вот-вот начнется?...

Чужой бог в сердце Тикаля: Тайна алтаря, который хотели забыть
Археологи рассказали, почему майя стирали следы чужой цивилизации....

А фиолетовый-то, говорят… ненастоящий!
Ученые доказали, что этот цвет — иллюзия, существующая лишь у нас в голове....

Общий наркоз стирает уникальность головного мозга
Открытие поможет выводить пациентов из комы....

Археологи обнаружили в Египте 3400-летний затерянный город
Самое поразительное: он скрывался… под руинами древнегреческого некрополя....

Стало известно, как Земля «выкачала» воду с обратной стороны Луны
Сенсацию принес аппарат китайской миссии «Чанъэ-6»....

Новое исследование показало: мягкие игрушки — самые опасные вещи в доме
Микробов в этих предметах оказалось вдвое больше, чем на сиденье унитаза....

Ещё одна бесценная находка: челюсть с берегов Тайваня принадлежала денисовцу
Загадка не давала покоя несколько лет....

Раскрыт секрет: почему самые древние метеориты не долетают до Земли
Против само Солнце, но это не единственная причина....