Как акустические голограммы позволили ускорить 3D-печать в разы
С момента своего появления в 1980-х годах 3D-печать значительно продвинулась вперед: сначала она использовалась в основном для прототипирования, а теперь находит применение в аэронавтике, медицине и даже в моде. Однако время выполнения по-прежнему является одним из основных факторов, ограничивающих печать трехмерных объектов.
Действительно, устройства 3D-печати в основном работают путем постепенного добавления слоев материала до тех пор, пока не будет получен желаемый объем формы, что делает процесс тем медленнее, чем больше конечный объект. В 2017 году Максим Шустеф и его коллеги из Ливерморской национальной лаборатории имени Лоуренса в США предложили процесс 3D-печати, который позволит собрать структуру полимеров в нужной объемной конфигурации за один раз. Принцип заключался в воздействии на так называемые «фотоинициирующие» химические вещества светящейся голограммой, которая запускает реакции полимеризации в желаемом объеме.
Однако по оптическим причинам с помощью этого метода очень сложно получить однородное разрешение, и не все формы воспроизводятся. Кай Мелде из Института медицинских исследований Макса Планка в Гейдельберге, Германия, и его коллеги разработали аналогичную технику, на этот раз основанную на прямом манипулировании материалом с помощью акустических голограмм.
Акустическая голография — это метод математического анализа, который на основе измерения распределения интенсивности звука на поверхности позволяет найти характеристики источника звука. Таким образом, можно рассчитать характеристики, которыми должен обладать источник звука, чтобы создать на поверхности желаемое акустическое поле. Затем, используя соответствующий источник, можно спроецировать голографическое звуковое «изображение».
Действительно, звук представляет собой механическое возмущение и, следовательно, воздействует на материю, с которой взаимодействует. Таким образом, управление акустическим полем в жидкости теоретически означает управление силами, способными перемещать в ней частицы, например клетки. Таким образом, с помощью звуковой голограммы можно организовать клетки в соответствии со сложными конфигурациями, бесконтактно и не повреждая их. Идея использования акустической голографии для печати биологических тканей (например, для культуры органов в лаборатории) не нова, но приложения до сих пор ограничивались двумерными формами или простыми, очень симметричными трехмерными структурами, плохо приспособлены к сложности биологических тканей.
Кай Мелде и его коллеги развили эту идею, используя несколько голографических источников с разными углами падения. Различные голограммы сконструированы так, чтобы взаимодействовать друг с другом и вызывать точечные помехи в определенных местах. Материализуясь в жидкости, эти интерференции создают своего рода ловушки в поле давления, куда любые твердые частицы во взвешенном состоянии направляются, а затем блокируются. Эти ловушки становятся вокселами (трехмерными пикселями) собираемой объемной структуры.

Исследователи разработали экспериментальное устройство для оценки этого метода. Полый куб заполняется жидкостью, содержащей твердые частицы (силикагель, гидрогель или мышечные клетки мыши, в зависимости от экспериментов). Куб встряхивают, чтобы хорошо перемешать твердую и жидкую фазы, затем помещают на набор из трех голографических излучателей. Частицы во взвешенном состоянии, падая на дно, пересекают зоны акустических помех и остаются там захваченными. Таким образом, исследователи построили различные геометрические фигуры, от правильных твердых тел до более сложных форм, таких как спираль или шнур в форме восьмерки.

Кай Мелде наблюдает, как звуковые голограммы собирают взвешенные в воде частицы.
Это еще не совсем 3D-печать, но в зависимости от используемого материала должна быть возможность заморозить полученную структуру. Например, в случае полимеров добавление в раствор фотоинициирующих элементов затвердевает при простом воздействии света.
Мы еще далеки от печати трехмерных органов, но это все-таки первый метод, основанный на акустических голограммах, позволяющий теоретически собрать материю за один раз, не ограничиваясь формой. Пока полученные формы представляют собой совокупность локализованных ловушек, относительно удаленных друг от друга. Исследователи, например, продемонстрировали теоретическую осуществимость конструкции в форме птицы, которую трудно построить на практике из-за ее размера. По их словам, эти ограничения связаны, прежде всего, с используемым материалом, и разрешение будет улучшено с более крупными, мощными и высокочастотными акустическими передатчиками.
Действительно, устройства 3D-печати в основном работают путем постепенного добавления слоев материала до тех пор, пока не будет получен желаемый объем формы, что делает процесс тем медленнее, чем больше конечный объект. В 2017 году Максим Шустеф и его коллеги из Ливерморской национальной лаборатории имени Лоуренса в США предложили процесс 3D-печати, который позволит собрать структуру полимеров в нужной объемной конфигурации за один раз. Принцип заключался в воздействии на так называемые «фотоинициирующие» химические вещества светящейся голограммой, которая запускает реакции полимеризации в желаемом объеме.
Однако по оптическим причинам с помощью этого метода очень сложно получить однородное разрешение, и не все формы воспроизводятся. Кай Мелде из Института медицинских исследований Макса Планка в Гейдельберге, Германия, и его коллеги разработали аналогичную технику, на этот раз основанную на прямом манипулировании материалом с помощью акустических голограмм.
Акустическая голография — это метод математического анализа, который на основе измерения распределения интенсивности звука на поверхности позволяет найти характеристики источника звука. Таким образом, можно рассчитать характеристики, которыми должен обладать источник звука, чтобы создать на поверхности желаемое акустическое поле. Затем, используя соответствующий источник, можно спроецировать голографическое звуковое «изображение».
Действительно, звук представляет собой механическое возмущение и, следовательно, воздействует на материю, с которой взаимодействует. Таким образом, управление акустическим полем в жидкости теоретически означает управление силами, способными перемещать в ней частицы, например клетки. Таким образом, с помощью звуковой голограммы можно организовать клетки в соответствии со сложными конфигурациями, бесконтактно и не повреждая их. Идея использования акустической голографии для печати биологических тканей (например, для культуры органов в лаборатории) не нова, но приложения до сих пор ограничивались двумерными формами или простыми, очень симметричными трехмерными структурами, плохо приспособлены к сложности биологических тканей.
Кай Мелде и его коллеги развили эту идею, используя несколько голографических источников с разными углами падения. Различные голограммы сконструированы так, чтобы взаимодействовать друг с другом и вызывать точечные помехи в определенных местах. Материализуясь в жидкости, эти интерференции создают своего рода ловушки в поле давления, куда любые твердые частицы во взвешенном состоянии направляются, а затем блокируются. Эти ловушки становятся вокселами (трехмерными пикселями) собираемой объемной структуры.

Исследователи разработали экспериментальное устройство для оценки этого метода. Полый куб заполняется жидкостью, содержащей твердые частицы (силикагель, гидрогель или мышечные клетки мыши, в зависимости от экспериментов). Куб встряхивают, чтобы хорошо перемешать твердую и жидкую фазы, затем помещают на набор из трех голографических излучателей. Частицы во взвешенном состоянии, падая на дно, пересекают зоны акустических помех и остаются там захваченными. Таким образом, исследователи построили различные геометрические фигуры, от правильных твердых тел до более сложных форм, таких как спираль или шнур в форме восьмерки.

Кай Мелде наблюдает, как звуковые голограммы собирают взвешенные в воде частицы.
Это еще не совсем 3D-печать, но в зависимости от используемого материала должна быть возможность заморозить полученную структуру. Например, в случае полимеров добавление в раствор фотоинициирующих элементов затвердевает при простом воздействии света.
Мы еще далеки от печати трехмерных органов, но это все-таки первый метод, основанный на акустических голограммах, позволяющий теоретически собрать материю за один раз, не ограничиваясь формой. Пока полученные формы представляют собой совокупность локализованных ловушек, относительно удаленных друг от друга. Исследователи, например, продемонстрировали теоретическую осуществимость конструкции в форме птицы, которую трудно построить на практике из-за ее размера. По их словам, эти ограничения связаны, прежде всего, с используемым материалом, и разрешение будет улучшено с более крупными, мощными и высокочастотными акустическими передатчиками.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Почему Китай так стремительно обгоняет США: Эксперт вскрыл секрет, который не замечал никто
Аналитик Дэн Ван уверен: если Запад не начнет срочно меняться, то он обречен перед Востоком...
Великий обман древности: итальянские ученые доказали, что историк соврал о гибели Помпей
Случайная надпись на стене перечеркнула официальную дату смерти города...
Роковая ошибка древних врачей: Почему современные ученые считают, что Александра Македонского похоронили заживо?
Он слышал плач своих полководцев и видел приготовления к бальзамированию, но не мог пошевелиться. Тело великого царя стало его собственным гробом...
Он все слышал, но не мог пошевелиться: Жуткая правда о том, почему тело Александра Македонского не разлагалось
Великий царь стал заложником собственной плоти. Диагноз, который поставили спустя 2300 лет, объясняет все: и «чудо» нетленности, и страшную смерть....
Новое исследование показало: Стоунхендж столетиями «водил за нос». Похоже, историю опять придется переписывать
Оказалось, что сенсация скрывалась в огромном круге, состоящем из загадочных шахт...
Почему Китай так стремительно обгоняет США: секрет, который не замечал никто. Часть 2
Уханьское метро, темная сторона инженерного государства и есть ли шансы у Штатов...
ЦРУ, море в пустыне и нефть: кто и зачем остановил проект Египта на 60 лет?
Часть вторая: Холодная война, 200 ядерных взрывов и 15 миллиардов, которые могут все изменить...
Египет хотел создать МОРЕ в пустыне Сахара: почему проект заморозили на 60 лет?
Часть первая: Реальный шанс спастись от всемирного потопа...
Российский ученый уверен, что максимально приблизился к разгадке тайны шаровой молнии
Похоже, наука ошибалась: это не плазменный сгусток, а «живой кристалл» из частиц-призраков...
Людовик XIV умер совсем не от гангрены: ученые сумели раскрыть истину лишь 310 лет спустя
Эксперты говорят: французский король был обречен. Медикам того времени была совершенно неизвестна его болезнь...
Алкогольная цивилизация: древние люди освоили земледелие... ради пива
Ученые давно подозревали это, а новые находки только подлили масла в огонь «пивной» версии...
Новый российский материал спасает от пожаров и взрывов аккумуляторов
Почему эксперты называют разработку сахалинских ученых настоящим прорывом в сохранении энергии?...