Как акустические голограммы позволили ускорить 3D-печать в разы
С момента своего появления в 1980-х годах 3D-печать значительно продвинулась вперед: сначала она использовалась в основном для прототипирования, а теперь находит применение в аэронавтике, медицине и даже в моде. Однако время выполнения по-прежнему является одним из основных факторов, ограничивающих печать трехмерных объектов.
Действительно, устройства 3D-печати в основном работают путем постепенного добавления слоев материала до тех пор, пока не будет получен желаемый объем формы, что делает процесс тем медленнее, чем больше конечный объект. В 2017 году Максим Шустеф и его коллеги из Ливерморской национальной лаборатории имени Лоуренса в США предложили процесс 3D-печати, который позволит собрать структуру полимеров в нужной объемной конфигурации за один раз. Принцип заключался в воздействии на так называемые «фотоинициирующие» химические вещества светящейся голограммой, которая запускает реакции полимеризации в желаемом объеме.
Однако по оптическим причинам с помощью этого метода очень сложно получить однородное разрешение, и не все формы воспроизводятся. Кай Мелде из Института медицинских исследований Макса Планка в Гейдельберге, Германия, и его коллеги разработали аналогичную технику, на этот раз основанную на прямом манипулировании материалом с помощью акустических голограмм.
Акустическая голография — это метод математического анализа, который на основе измерения распределения интенсивности звука на поверхности позволяет найти характеристики источника звука. Таким образом, можно рассчитать характеристики, которыми должен обладать источник звука, чтобы создать на поверхности желаемое акустическое поле. Затем, используя соответствующий источник, можно спроецировать голографическое звуковое «изображение».
Действительно, звук представляет собой механическое возмущение и, следовательно, воздействует на материю, с которой взаимодействует. Таким образом, управление акустическим полем в жидкости теоретически означает управление силами, способными перемещать в ней частицы, например клетки. Таким образом, с помощью звуковой голограммы можно организовать клетки в соответствии со сложными конфигурациями, бесконтактно и не повреждая их. Идея использования акустической голографии для печати биологических тканей (например, для культуры органов в лаборатории) не нова, но приложения до сих пор ограничивались двумерными формами или простыми, очень симметричными трехмерными структурами, плохо приспособлены к сложности биологических тканей.
Кай Мелде и его коллеги развили эту идею, используя несколько голографических источников с разными углами падения. Различные голограммы сконструированы так, чтобы взаимодействовать друг с другом и вызывать точечные помехи в определенных местах. Материализуясь в жидкости, эти интерференции создают своего рода ловушки в поле давления, куда любые твердые частицы во взвешенном состоянии направляются, а затем блокируются. Эти ловушки становятся вокселами (трехмерными пикселями) собираемой объемной структуры.
Исследователи разработали экспериментальное устройство для оценки этого метода. Полый куб заполняется жидкостью, содержащей твердые частицы (силикагель, гидрогель или мышечные клетки мыши, в зависимости от экспериментов). Куб встряхивают, чтобы хорошо перемешать твердую и жидкую фазы, затем помещают на набор из трех голографических излучателей. Частицы во взвешенном состоянии, падая на дно, пересекают зоны акустических помех и остаются там захваченными. Таким образом, исследователи построили различные геометрические фигуры, от правильных твердых тел до более сложных форм, таких как спираль или шнур в форме восьмерки.
Кай Мелде наблюдает, как звуковые голограммы собирают взвешенные в воде частицы.
Это еще не совсем 3D-печать, но в зависимости от используемого материала должна быть возможность заморозить полученную структуру. Например, в случае полимеров добавление в раствор фотоинициирующих элементов затвердевает при простом воздействии света.
Мы еще далеки от печати трехмерных органов, но это все-таки первый метод, основанный на акустических голограммах, позволяющий теоретически собрать материю за один раз, не ограничиваясь формой. Пока полученные формы представляют собой совокупность локализованных ловушек, относительно удаленных друг от друга. Исследователи, например, продемонстрировали теоретическую осуществимость конструкции в форме птицы, которую трудно построить на практике из-за ее размера. По их словам, эти ограничения связаны, прежде всего, с используемым материалом, и разрешение будет улучшено с более крупными, мощными и высокочастотными акустическими передатчиками.
Действительно, устройства 3D-печати в основном работают путем постепенного добавления слоев материала до тех пор, пока не будет получен желаемый объем формы, что делает процесс тем медленнее, чем больше конечный объект. В 2017 году Максим Шустеф и его коллеги из Ливерморской национальной лаборатории имени Лоуренса в США предложили процесс 3D-печати, который позволит собрать структуру полимеров в нужной объемной конфигурации за один раз. Принцип заключался в воздействии на так называемые «фотоинициирующие» химические вещества светящейся голограммой, которая запускает реакции полимеризации в желаемом объеме.
Однако по оптическим причинам с помощью этого метода очень сложно получить однородное разрешение, и не все формы воспроизводятся. Кай Мелде из Института медицинских исследований Макса Планка в Гейдельберге, Германия, и его коллеги разработали аналогичную технику, на этот раз основанную на прямом манипулировании материалом с помощью акустических голограмм.
Акустическая голография — это метод математического анализа, который на основе измерения распределения интенсивности звука на поверхности позволяет найти характеристики источника звука. Таким образом, можно рассчитать характеристики, которыми должен обладать источник звука, чтобы создать на поверхности желаемое акустическое поле. Затем, используя соответствующий источник, можно спроецировать голографическое звуковое «изображение».
Действительно, звук представляет собой механическое возмущение и, следовательно, воздействует на материю, с которой взаимодействует. Таким образом, управление акустическим полем в жидкости теоретически означает управление силами, способными перемещать в ней частицы, например клетки. Таким образом, с помощью звуковой голограммы можно организовать клетки в соответствии со сложными конфигурациями, бесконтактно и не повреждая их. Идея использования акустической голографии для печати биологических тканей (например, для культуры органов в лаборатории) не нова, но приложения до сих пор ограничивались двумерными формами или простыми, очень симметричными трехмерными структурами, плохо приспособлены к сложности биологических тканей.
Кай Мелде и его коллеги развили эту идею, используя несколько голографических источников с разными углами падения. Различные голограммы сконструированы так, чтобы взаимодействовать друг с другом и вызывать точечные помехи в определенных местах. Материализуясь в жидкости, эти интерференции создают своего рода ловушки в поле давления, куда любые твердые частицы во взвешенном состоянии направляются, а затем блокируются. Эти ловушки становятся вокселами (трехмерными пикселями) собираемой объемной структуры.
Исследователи разработали экспериментальное устройство для оценки этого метода. Полый куб заполняется жидкостью, содержащей твердые частицы (силикагель, гидрогель или мышечные клетки мыши, в зависимости от экспериментов). Куб встряхивают, чтобы хорошо перемешать твердую и жидкую фазы, затем помещают на набор из трех голографических излучателей. Частицы во взвешенном состоянии, падая на дно, пересекают зоны акустических помех и остаются там захваченными. Таким образом, исследователи построили различные геометрические фигуры, от правильных твердых тел до более сложных форм, таких как спираль или шнур в форме восьмерки.
Кай Мелде наблюдает, как звуковые голограммы собирают взвешенные в воде частицы.
Это еще не совсем 3D-печать, но в зависимости от используемого материала должна быть возможность заморозить полученную структуру. Например, в случае полимеров добавление в раствор фотоинициирующих элементов затвердевает при простом воздействии света.
Мы еще далеки от печати трехмерных органов, но это все-таки первый метод, основанный на акустических голограммах, позволяющий теоретически собрать материю за один раз, не ограничиваясь формой. Пока полученные формы представляют собой совокупность локализованных ловушек, относительно удаленных друг от друга. Исследователи, например, продемонстрировали теоретическую осуществимость конструкции в форме птицы, которую трудно построить на практике из-за ее размера. По их словам, эти ограничения связаны, прежде всего, с используемым материалом, и разрешение будет улучшено с более крупными, мощными и высокочастотными акустическими передатчиками.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Маск на грани: третья космическая катастрофа за год
Но эксперты уверены, что миллиардеру все снова сойдет с рук....
Аллигаторова щука: 100 миллионов лет... без эволюции
Как гигантская пресноводная рыба пережила даже динозавров?...
Антарктида стремительно зеленеет: за 40 лет там стало в 10 раз больше зелени
Почему так происходит и как это повлияет на климат по всей планете....
7 из 10: отключен еще один прибор «Вояджера-2»
Чем еще пришлось пожертвовать инженерам NASA?...
Иисус Христос пользовался... волшебной палочкой
Об этом говорят фрески и другие древние изображения....
Спустя 500 лет останки Колумба наконец-то обнаружены!
Ученым понадобилось более 20 лет, чтобы доказать их подлинность....
Таинственные области в мантии Земли оказались не тем, чем их считали ученые
Новое исследование показало, что все может быть намного проще....
Фотоны могут путешествовать в прошлое
Звучит поразительно, но физики обнаружили «отрицательное время» в странном эксперименте....
Тысячи компьютеров c Linux заражены вредоносным ПО
Эпидемия началась ещё в 2021 году....
Долой болты: будущее прочных соединений — за метаповерхностями
Управляемый крепёж для аэрокосмической отрасли, робототехники и медицины....
Колумб был не первым: за сотни лет до него викинги вовсю торговали с эскимосами
Об этом рассказали бивни средневековых моржей....
Мавзолей римского гладиатора оказался «общежитием»
Ученые разбираются, откуда в саркофаге бойца взялись кости 12 человек....
Археологи восстановили приёмы боя на копьях в бронзовом веке
Экспериментальная археология проливает свет на технику обращения с оружием....
Средство для бесследного заживления ран нашли в глистах
Брезгливость vs польза....
В Америке действует секретная программа по поиску и сокрытию информации об НЛО
Конгресс США в гневе, ведь Пентагон водил чиновников за нос много лет....
Льда на Луне ещё больше, чем думали
Местной воды должно хватить будущим колонистам сразу на всё....