Фермент-оборотень, который меняет свою личину в зависимости от соли
Лечебная пиявка (Hirudo medicinalis) — древний метод лечения различных заболеваний, который до сих пор используется в современной медицине. Одна из причин ее эффективности — это способность пиявки предотвращать свертывание крови у своей жертвы. За это отвечает особый фермент, который пиявка выделяет вместе со слюной — дестабилаза. Этот фермент обладает двумя разными свойствами: он может разрушать клеточные стенки микробов и растворять стабилизированный фибрин — белок, который участвует в образовании тромбов. Дестабилаза может быть полезна для разработки новых лекарств от тромбоза и других заболеваний крови.
Но как дестабилаза осуществляет эти две активности на молекулярном уровне? И как она реагирует на разные условия среды? Эти вопросы долгое время оставались без ответа. Недавно группа ученых из России провела подробное исследование структуры и свойств дестабилазы с помощью рентгеноструктурного анализа и компьютерного моделирования. Они сделали несколько удивительных открытий, которые расширили наше понимание этого уникального фермента.
Для того чтобы изучить структуру и свойства дестабилазы, ученые вырастили кристаллы этого фермента в лаборатории. Кристаллы белков позволяют увидеть их трехмерную форму с помощью рентгеновских лучей. Анализируя углы и интенсивность отраженных лучей, можно восстановить структуру белка.
Ученые получили две структуры дестабилазы: одну в отсутствие натрия в растворе, а другую в присутствии натрия. Натрий — это элемент, который содержится в крови животных и человека и в обыкновенной поваренной соли. Оказалось, что дестабилаза меняет свою форму в зависимости от концентрации натрия. Когда натрия мало, дестабилаза имеет одну форму, а когда натрия много — другую.
Это объясняет, почему дестабилаза имеет две разные активности: разрушение клеточных стенок микробов (мурамидазная активность) и растворение фибрина (изопептидазная активность). Обе эти активности происходят в одном и том же месте на молекуле дестабилазы — активном центре. Активный центр — это часть белка, которая связывается с другими молекулами и участвует в химических реакциях. В активном центре дестабилазы есть две аминокислоты — глутаминовая кислота и аспарагиновая кислота. Аминокислоты — это строительные блоки белков.
Когда натрия мало, эти две аминокислоты связываются с молекулами воды и образуют активный центр для мурамидазной активности. Мурамидазная активность означает, что дестабилаза может разрезать связь между двумя сахарами — N-ацетилглюкозамином и N-ацетилмураминовой кислотой. Эти два сахара составляют клеточные стенки микробов. Разрушая эту связь, дестабилаза уничтожает клеточные стенки микробов и защищает пиявку от инфекций.
Когда натрия много, эти две аминокислоты связываются с ионом натрия и образуют активный центр для изопептидазной активности. Изопептидазная активность означает, что дестабилаза может разрезать связь между двумя аминокислотами — глутамином и лизином. Эти две аминокислоты составляют фибрин — белок, который участвует в свертывании крови и образовании тромбов. Разрушая эту связь, дестабилаза растворяет фибрин и предотвращает закупорку сосудов.
Ученые также предложили новую гипотезу о том, какие аминокислоты в составе дестабилазы отвечают за изопептидазную активность. Раньше считалось, что за эту активность отвечают аминокислоты серин и лизин. Но ученые показали, что более вероятно, что за эту активность отвечает аминокислота гистидин. Гистидин — это аминокислота, которая может действовать как кислота или как основание в зависимости от рН среды. Ученые рассчитали рН активного центра дестабилазы и показали, что гистидин может принимать протон от воды и передавать его на связь между глутамином и лизином, разрывая ее.
Информация о результатах исследования была опубликована в журнале Scientific Reports. Авторами исследования являются ученые из Московского физико-технического института, Института кристаллографии им. А. В. Шубникова РАН, Института биоорганической химии им. М. М. Шемякина и Ю. А. Овчинникова РАН, Института биологии развития им. Н. К. Кольцова РАН и Московского государственного университета им. М. В. Ломоносова.
Это исследование помогает лучше понять механизм действия дестабилазы. Дестабилаза может быть полезна для разработки новых лекарств от тромбообразования и других заболеваний крови. Тромбообразование — образование кровяных сгустков в сосудах, которые могут привести к инфаркту, инсульту или гангрене. Существующие лекарства от тромбообразования имеют ряд недостатков, таких как высокая токсичность, аллергические реакции и нежелательные побочные эффекты. Дестабилаза же имеет высокую специфичность к фибрину и не влияет на другие белки крови. Кроме того, дестабилаза имеет антимикробную активность, которая может защитить организм от инфекций.
Несколько исследований показали, что дестабилаза эффективна в лечении экспериментального тромбообразования у животных. Также были получены рекомбинантные формы дестабилазы с помощью генной инженерии. Это позволяет получать большое количество чистого фермента для клинических испытаний. В настоящее время ведутся работы по созданию лекарственных форм дестабилазы, таких, как таблетки, инъекции или пластыри.
Но как дестабилаза осуществляет эти две активности на молекулярном уровне? И как она реагирует на разные условия среды? Эти вопросы долгое время оставались без ответа. Недавно группа ученых из России провела подробное исследование структуры и свойств дестабилазы с помощью рентгеноструктурного анализа и компьютерного моделирования. Они сделали несколько удивительных открытий, которые расширили наше понимание этого уникального фермента.
Для того чтобы изучить структуру и свойства дестабилазы, ученые вырастили кристаллы этого фермента в лаборатории. Кристаллы белков позволяют увидеть их трехмерную форму с помощью рентгеновских лучей. Анализируя углы и интенсивность отраженных лучей, можно восстановить структуру белка.
Ученые получили две структуры дестабилазы: одну в отсутствие натрия в растворе, а другую в присутствии натрия. Натрий — это элемент, который содержится в крови животных и человека и в обыкновенной поваренной соли. Оказалось, что дестабилаза меняет свою форму в зависимости от концентрации натрия. Когда натрия мало, дестабилаза имеет одну форму, а когда натрия много — другую.
Это объясняет, почему дестабилаза имеет две разные активности: разрушение клеточных стенок микробов (мурамидазная активность) и растворение фибрина (изопептидазная активность). Обе эти активности происходят в одном и том же месте на молекуле дестабилазы — активном центре. Активный центр — это часть белка, которая связывается с другими молекулами и участвует в химических реакциях. В активном центре дестабилазы есть две аминокислоты — глутаминовая кислота и аспарагиновая кислота. Аминокислоты — это строительные блоки белков.
Когда натрия мало, эти две аминокислоты связываются с молекулами воды и образуют активный центр для мурамидазной активности. Мурамидазная активность означает, что дестабилаза может разрезать связь между двумя сахарами — N-ацетилглюкозамином и N-ацетилмураминовой кислотой. Эти два сахара составляют клеточные стенки микробов. Разрушая эту связь, дестабилаза уничтожает клеточные стенки микробов и защищает пиявку от инфекций.
Когда натрия много, эти две аминокислоты связываются с ионом натрия и образуют активный центр для изопептидазной активности. Изопептидазная активность означает, что дестабилаза может разрезать связь между двумя аминокислотами — глутамином и лизином. Эти две аминокислоты составляют фибрин — белок, который участвует в свертывании крови и образовании тромбов. Разрушая эту связь, дестабилаза растворяет фибрин и предотвращает закупорку сосудов.
Ученые также предложили новую гипотезу о том, какие аминокислоты в составе дестабилазы отвечают за изопептидазную активность. Раньше считалось, что за эту активность отвечают аминокислоты серин и лизин. Но ученые показали, что более вероятно, что за эту активность отвечает аминокислота гистидин. Гистидин — это аминокислота, которая может действовать как кислота или как основание в зависимости от рН среды. Ученые рассчитали рН активного центра дестабилазы и показали, что гистидин может принимать протон от воды и передавать его на связь между глутамином и лизином, разрывая ее.
Информация о результатах исследования была опубликована в журнале Scientific Reports. Авторами исследования являются ученые из Московского физико-технического института, Института кристаллографии им. А. В. Шубникова РАН, Института биоорганической химии им. М. М. Шемякина и Ю. А. Овчинникова РАН, Института биологии развития им. Н. К. Кольцова РАН и Московского государственного университета им. М. В. Ломоносова.
Это исследование помогает лучше понять механизм действия дестабилазы. Дестабилаза может быть полезна для разработки новых лекарств от тромбообразования и других заболеваний крови. Тромбообразование — образование кровяных сгустков в сосудах, которые могут привести к инфаркту, инсульту или гангрене. Существующие лекарства от тромбообразования имеют ряд недостатков, таких как высокая токсичность, аллергические реакции и нежелательные побочные эффекты. Дестабилаза же имеет высокую специфичность к фибрину и не влияет на другие белки крови. Кроме того, дестабилаза имеет антимикробную активность, которая может защитить организм от инфекций.
Несколько исследований показали, что дестабилаза эффективна в лечении экспериментального тромбообразования у животных. Также были получены рекомбинантные формы дестабилазы с помощью генной инженерии. Это позволяет получать большое количество чистого фермента для клинических испытаний. В настоящее время ведутся работы по созданию лекарственных форм дестабилазы, таких, как таблетки, инъекции или пластыри.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Резкое сокращение численности летучих мышей вызвало смерти… тысяч американских детей
Зловещая взаимосвязь выявилась совсем недавно....
Антарктида достигла точки невозврата?
Выводы ведущих ученых разнятся....
Японский угорь: съеден, но не сломлен
Обнаружен поразительный способ убегать даже из желудка хищника....
Устройство причудливой формы признано самым креативным и полезным девайсом года
Большинство английских ученых пришли в восторг от этого прибора....
Утраченную технологию кораблестроения возрастом 3500 лет заново открыли в 1950-х
Догреческие жители Крита были удивительно искусными корабелами....
В Польше нашли древнюю могилу ребёнка-«вампира»
На страшное захоронение наткнулись в Хелме....
Интернет-кошмар для детей и подростков в Австралии
Правительство закрывает малолетним доступ к соцсетям....
Встретимся в «Кафе „Белая акула“»
Ученые открыли главный секрет самых больших хищных рыб....
Шнобелевскую премию присудили за ракеты с голубиным наведением и дышащих задом свиней
Сюр, достойный научной премии за сомнительные достижения....
Как зомби: частицы организма продолжили существование между жизнью и смертью
Странные клетки прозвали ксено- и антропботами....
Ученые обнаружили «смайлик» на Марсе
Эта «улыбка» может намекать на научную сенсацию....
Водоросли: ключ к бесконечному источнику энергии?
Ученые считают, что новая технология радикально изменит мир....
Деревяшка возрастом 1300 лет оказалась частью японской таблицы умножения
Но придумали такой «калькулятор» гораздо раньше — в Китае....
Кто достоин пособия: Теперь решает искусственный интелект
Суд не сможет отменить вероятные ошибки....
Оказалось, что угловатая акула со свиной мордой хрюкает при поимке
А еще эта уникальная рыба просто обожает яйца....
Шкурный вопрос: Скандинавы мастерили лодки из кожи ещё в эпоху неолита
А иначе картина морских походов не складывается....