
Фермент-оборотень, который меняет свою личину в зависимости от соли
Лечебная пиявка (Hirudo medicinalis) — древний метод лечения различных заболеваний, который до сих пор используется в современной медицине. Одна из причин ее эффективности — это способность пиявки предотвращать свертывание крови у своей жертвы. За это отвечает особый фермент, который пиявка выделяет вместе со слюной — дестабилаза. Этот фермент обладает двумя разными свойствами: он может разрушать клеточные стенки микробов и растворять стабилизированный фибрин — белок, который участвует в образовании тромбов. Дестабилаза может быть полезна для разработки новых лекарств от тромбоза и других заболеваний крови.
Но как дестабилаза осуществляет эти две активности на молекулярном уровне? И как она реагирует на разные условия среды? Эти вопросы долгое время оставались без ответа. Недавно группа ученых из России провела подробное исследование структуры и свойств дестабилазы с помощью рентгеноструктурного анализа и компьютерного моделирования. Они сделали несколько удивительных открытий, которые расширили наше понимание этого уникального фермента.
Для того чтобы изучить структуру и свойства дестабилазы, ученые вырастили кристаллы этого фермента в лаборатории. Кристаллы белков позволяют увидеть их трехмерную форму с помощью рентгеновских лучей. Анализируя углы и интенсивность отраженных лучей, можно восстановить структуру белка.
Ученые получили две структуры дестабилазы: одну в отсутствие натрия в растворе, а другую в присутствии натрия. Натрий — это элемент, который содержится в крови животных и человека и в обыкновенной поваренной соли. Оказалось, что дестабилаза меняет свою форму в зависимости от концентрации натрия. Когда натрия мало, дестабилаза имеет одну форму, а когда натрия много — другую.
Это объясняет, почему дестабилаза имеет две разные активности: разрушение клеточных стенок микробов (мурамидазная активность) и растворение фибрина (изопептидазная активность). Обе эти активности происходят в одном и том же месте на молекуле дестабилазы — активном центре. Активный центр — это часть белка, которая связывается с другими молекулами и участвует в химических реакциях. В активном центре дестабилазы есть две аминокислоты — глутаминовая кислота и аспарагиновая кислота. Аминокислоты — это строительные блоки белков.
Когда натрия мало, эти две аминокислоты связываются с молекулами воды и образуют активный центр для мурамидазной активности. Мурамидазная активность означает, что дестабилаза может разрезать связь между двумя сахарами — N-ацетилглюкозамином и N-ацетилмураминовой кислотой. Эти два сахара составляют клеточные стенки микробов. Разрушая эту связь, дестабилаза уничтожает клеточные стенки микробов и защищает пиявку от инфекций.
Когда натрия много, эти две аминокислоты связываются с ионом натрия и образуют активный центр для изопептидазной активности. Изопептидазная активность означает, что дестабилаза может разрезать связь между двумя аминокислотами — глутамином и лизином. Эти две аминокислоты составляют фибрин — белок, который участвует в свертывании крови и образовании тромбов. Разрушая эту связь, дестабилаза растворяет фибрин и предотвращает закупорку сосудов.
Ученые также предложили новую гипотезу о том, какие аминокислоты в составе дестабилазы отвечают за изопептидазную активность. Раньше считалось, что за эту активность отвечают аминокислоты серин и лизин. Но ученые показали, что более вероятно, что за эту активность отвечает аминокислота гистидин. Гистидин — это аминокислота, которая может действовать как кислота или как основание в зависимости от рН среды. Ученые рассчитали рН активного центра дестабилазы и показали, что гистидин может принимать протон от воды и передавать его на связь между глутамином и лизином, разрывая ее.
Информация о результатах исследования была опубликована в журнале Scientific Reports. Авторами исследования являются ученые из Московского физико-технического института, Института кристаллографии им. А. В. Шубникова РАН, Института биоорганической химии им. М. М. Шемякина и Ю. А. Овчинникова РАН, Института биологии развития им. Н. К. Кольцова РАН и Московского государственного университета им. М. В. Ломоносова.
Это исследование помогает лучше понять механизм действия дестабилазы. Дестабилаза может быть полезна для разработки новых лекарств от тромбообразования и других заболеваний крови. Тромбообразование — образование кровяных сгустков в сосудах, которые могут привести к инфаркту, инсульту или гангрене. Существующие лекарства от тромбообразования имеют ряд недостатков, таких как высокая токсичность, аллергические реакции и нежелательные побочные эффекты. Дестабилаза же имеет высокую специфичность к фибрину и не влияет на другие белки крови. Кроме того, дестабилаза имеет антимикробную активность, которая может защитить организм от инфекций.
Несколько исследований показали, что дестабилаза эффективна в лечении экспериментального тромбообразования у животных. Также были получены рекомбинантные формы дестабилазы с помощью генной инженерии. Это позволяет получать большое количество чистого фермента для клинических испытаний. В настоящее время ведутся работы по созданию лекарственных форм дестабилазы, таких, как таблетки, инъекции или пластыри.
Но как дестабилаза осуществляет эти две активности на молекулярном уровне? И как она реагирует на разные условия среды? Эти вопросы долгое время оставались без ответа. Недавно группа ученых из России провела подробное исследование структуры и свойств дестабилазы с помощью рентгеноструктурного анализа и компьютерного моделирования. Они сделали несколько удивительных открытий, которые расширили наше понимание этого уникального фермента.
Для того чтобы изучить структуру и свойства дестабилазы, ученые вырастили кристаллы этого фермента в лаборатории. Кристаллы белков позволяют увидеть их трехмерную форму с помощью рентгеновских лучей. Анализируя углы и интенсивность отраженных лучей, можно восстановить структуру белка.
Ученые получили две структуры дестабилазы: одну в отсутствие натрия в растворе, а другую в присутствии натрия. Натрий — это элемент, который содержится в крови животных и человека и в обыкновенной поваренной соли. Оказалось, что дестабилаза меняет свою форму в зависимости от концентрации натрия. Когда натрия мало, дестабилаза имеет одну форму, а когда натрия много — другую.
Это объясняет, почему дестабилаза имеет две разные активности: разрушение клеточных стенок микробов (мурамидазная активность) и растворение фибрина (изопептидазная активность). Обе эти активности происходят в одном и том же месте на молекуле дестабилазы — активном центре. Активный центр — это часть белка, которая связывается с другими молекулами и участвует в химических реакциях. В активном центре дестабилазы есть две аминокислоты — глутаминовая кислота и аспарагиновая кислота. Аминокислоты — это строительные блоки белков.
Когда натрия мало, эти две аминокислоты связываются с молекулами воды и образуют активный центр для мурамидазной активности. Мурамидазная активность означает, что дестабилаза может разрезать связь между двумя сахарами — N-ацетилглюкозамином и N-ацетилмураминовой кислотой. Эти два сахара составляют клеточные стенки микробов. Разрушая эту связь, дестабилаза уничтожает клеточные стенки микробов и защищает пиявку от инфекций.
Когда натрия много, эти две аминокислоты связываются с ионом натрия и образуют активный центр для изопептидазной активности. Изопептидазная активность означает, что дестабилаза может разрезать связь между двумя аминокислотами — глутамином и лизином. Эти две аминокислоты составляют фибрин — белок, который участвует в свертывании крови и образовании тромбов. Разрушая эту связь, дестабилаза растворяет фибрин и предотвращает закупорку сосудов.
Ученые также предложили новую гипотезу о том, какие аминокислоты в составе дестабилазы отвечают за изопептидазную активность. Раньше считалось, что за эту активность отвечают аминокислоты серин и лизин. Но ученые показали, что более вероятно, что за эту активность отвечает аминокислота гистидин. Гистидин — это аминокислота, которая может действовать как кислота или как основание в зависимости от рН среды. Ученые рассчитали рН активного центра дестабилазы и показали, что гистидин может принимать протон от воды и передавать его на связь между глутамином и лизином, разрывая ее.
Информация о результатах исследования была опубликована в журнале Scientific Reports. Авторами исследования являются ученые из Московского физико-технического института, Института кристаллографии им. А. В. Шубникова РАН, Института биоорганической химии им. М. М. Шемякина и Ю. А. Овчинникова РАН, Института биологии развития им. Н. К. Кольцова РАН и Московского государственного университета им. М. В. Ломоносова.
Это исследование помогает лучше понять механизм действия дестабилазы. Дестабилаза может быть полезна для разработки новых лекарств от тромбообразования и других заболеваний крови. Тромбообразование — образование кровяных сгустков в сосудах, которые могут привести к инфаркту, инсульту или гангрене. Существующие лекарства от тромбообразования имеют ряд недостатков, таких как высокая токсичность, аллергические реакции и нежелательные побочные эффекты. Дестабилаза же имеет высокую специфичность к фибрину и не влияет на другие белки крови. Кроме того, дестабилаза имеет антимикробную активность, которая может защитить организм от инфекций.
Несколько исследований показали, что дестабилаза эффективна в лечении экспериментального тромбообразования у животных. Также были получены рекомбинантные формы дестабилазы с помощью генной инженерии. Это позволяет получать большое количество чистого фермента для клинических испытаний. В настоящее время ведутся работы по созданию лекарственных форм дестабилазы, таких, как таблетки, инъекции или пластыри.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Северное полушарие Земли стремительно темнеет. И это плохая новость для всех
Почему Россия находится в зоне особого риска и можно ли остановить этот процесс?...

Тайна необъяснимых северных кратеров разгадана спустя 11 лет после появления первого провала на Ямале
Почему российские ученые не рады своему открытию, называя его «русской рулеткой»?...

Генетики вычислили, какую страшную цену заплатили наши предки за высокий интеллект
Новое исследование еще раз доказало, что эволюция требует огромных жертв...

Ученые наконец-то раскрыли главную загадку града. Старая теория оказалась неверной
Поразительное открытие помогли сделать грозовые «отпечатки пальцев»...

Секретная база в Гренландии, спрятанная 30-метровым слоем льда, угрожает всему миру
Гляциолог Уильям Колган говорит: «Американские военные думали, что это никогда не вскроется, но теперь...»...

Рядом с пирамидами Гизы обнаружены секретные тоннели, ведущие в забытый подземный мир
Быть может, их построили даже не египтяне. Но кто тогда?...

Наше тело — это… большой мозг: эксперимент русского ученого может совершить революцию в медицине
Эксперты говорят: «Открытие клеточной памяти — это огромный шаг к медицине, где лечение будет подбираться точно для конкретного человека»...

Почему на космическое ноу-хау «солнечный свет по запросу» ополчились астрономы всего мира?
Американский стартап обещает, что все будет хорошо, но ему никто не верит...

Астрофизики Гавайского университета неожиданно разгадали тайну… солнечного дождя
Рассказываем, почему новое открытие важно для каждого жителя Земли...

Как мадагаскарские лемуры ускоряют покорение космоса?
И почему именно эти животные оказались самые ценными для будущего всего человечества?...

В Антарктиде обнаружен метановый «спящий гигант», который очень быстро просыпается. И это плохая новость
Ученые в тревоге задаются вопросом: означают ли десятки газовых гейзеров под водой, что эффект домино уже запущен?...

Ученые выяснили: в каком возрасте наш мозг достигает пика своей активности
Почему же 20-30 лет оказались стереотипом, далеким от реальной жизни?...