
Driblebot может играть в футбол на песке, гравии, грязи и снеге
Название Driblebot переводится как «робот, ведущий мяч», «робот для дриблинга». Он действительно может водить футбольный мяч на таких ландшафтах, как песок, гравий, грязь и снег. Машина обучается и подстраивается под изменчивую динамику мяча.
Лаборатория искусственного интеллекта Массачусетского технологического института (MIT) — часть Лаборатории компьютерных наук и искусственного интеллекта (CSAIL). Научный коллектив создал роботизированную систему, способную управлять футбольным мячом в тех же условиях, что и люди. Робот использует сочетание встроенных датчиков и вычисления для перемещения по различным природным ландшафтам. В том числе Driblebot может вставать и подбирать мяч после падения. Исследователи хотели научить машину автоматически управлять ногами, чтобы развить сложные навыки реагирования на различные естественные поверхности.
Робот, мяч и местность находятся также внутри симуляции, то есть цифрового двойника окружающей среды. Параллельно в режиме реального времени моделируются 4000 версий виртуального робота, что позволяет обрабатывать данные в 4000 раз быстрее, чем при использовании только лишь физически существующего робота.
Причём Driblebot начинает движение, не зная, как вести мяч. Он, по сути, пытается выяснить, какую последовательность усилий должен совершать ногами.
Аспирант MIT Гейб Марголис пояснил, что если в реальном времени на комплекс движений нужно пару дней, то в симуляторе пролетают сотни виртуальных дней. Со временем робот учится всё лучше и лучше управлять футбольным мячом, чтобы соответствовать желаемой скорости.
Driblebot также может перемещаться по незнакомой местности и подниматься после падений благодаря отдельному контроллеру, а затем переключиться на контроллер дриблинга, чтобы продолжить преследование мяча.
— Пулкит Агравал, профессор MIT, главный исследователь CSAIL и директор лаборатории ИИ.
Увлечение четвероногими роботами и футболом имеет глубокие корни. Канадский профессор Алан Макворт впервые описал эту идею в статье под названием «О наблюдении за роботами» ещё в 1992 году. Позднее японские исследователи организовали семинар на тему «Грандиозные вызовы в области искусственного интеллекта», который привёл к дискуссиям об использовании футбола для продвижения науки и технологий. Год спустя запустили проект Robot J-League, и вскоре последовал глобальный ажиотаж. Так возникли международные соревнования — Чемпионат мира по футболу среди роботов RoboCup.
Итак, особенность проекта заключается как раз в естественных, трудных условиях для Driblebot. Что касается аппаратной части, робот оснащён набором датчиков, которые позволяют ему воспринимать окружающую среду, чувствовать, где он находится, «понимать» своё положение и «видеть» окрестности. Набор приводов позволяют машине прикладывать усилия и перемещать себя и объекты. В системе наряду с датчиками и механизмами действует компьютер, чтобы преобразовывать данные в действия. Когда робот бежит по снегу, он может чувствовать его с помощью моторных датчиков. Но футбол — более сложная задача, чем ходьба, поэтому команда использовала камеры на голове и туловище робота для новой сенсорной модальности зрения в дополнение к новому двигательному навыку.
И учёным ещё есть, к чему стремиться: Driblebot пока не обучен условиям на склонах и лестницах. Робот не воспринимает геометрию местности; он только оценивает свойства контакта с материалом, такие как трение. Например, если есть ступенька вверх, робот застрянет. Он не сможет поднять мяч над ступенькой — это область, которую авторы проекта исследуют в будущем.
Исследователи затем применят выводы, полученные в ходе разработки Dribblebot, к другим задачам: комбинированное передвижение и манипулирование объектами, быстрая транспортировка различных объектов с места на место с помощью ног или «рук».
Сторонний эксперт по ИИ Викаш Кумар отметил, что в Dribblebot впечатляет, как сенсомоторные навыки синтезируются в режиме реального времени в недорогой системе с использованием встроенных вычислительных ресурсов. В общем, система демонстрирует замечательную ловкость и координацию.
Лаборатория искусственного интеллекта Массачусетского технологического института (MIT) — часть Лаборатории компьютерных наук и искусственного интеллекта (CSAIL). Научный коллектив создал роботизированную систему, способную управлять футбольным мячом в тех же условиях, что и люди. Робот использует сочетание встроенных датчиков и вычисления для перемещения по различным природным ландшафтам. В том числе Driblebot может вставать и подбирать мяч после падения. Исследователи хотели научить машину автоматически управлять ногами, чтобы развить сложные навыки реагирования на различные естественные поверхности.
Робот, мяч и местность находятся также внутри симуляции, то есть цифрового двойника окружающей среды. Параллельно в режиме реального времени моделируются 4000 версий виртуального робота, что позволяет обрабатывать данные в 4000 раз быстрее, чем при использовании только лишь физически существующего робота.
Причём Driblebot начинает движение, не зная, как вести мяч. Он, по сути, пытается выяснить, какую последовательность усилий должен совершать ногами.
Аспирант MIT Гейб Марголис пояснил, что если в реальном времени на комплекс движений нужно пару дней, то в симуляторе пролетают сотни виртуальных дней. Со временем робот учится всё лучше и лучше управлять футбольным мячом, чтобы соответствовать желаемой скорости.
Driblebot также может перемещаться по незнакомой местности и подниматься после падений благодаря отдельному контроллеру, а затем переключиться на контроллер дриблинга, чтобы продолжить преследование мяча.
Если вы посмотрите вокруг, то увидите большинство роботов на колёсах. Но представьте сценарий бедствия, наводнения или землетрясения. Мы хотим, чтобы роботы помогали людям при поисках и спасении. Для этого машины должны передвигаться по пресечённой местности. Наша цель — создать алгоритмы для роботов с ногами, то есть обеспечить автономность в сложных условиях
— Пулкит Агравал, профессор MIT, главный исследователь CSAIL и директор лаборатории ИИ.
Увлечение четвероногими роботами и футболом имеет глубокие корни. Канадский профессор Алан Макворт впервые описал эту идею в статье под названием «О наблюдении за роботами» ещё в 1992 году. Позднее японские исследователи организовали семинар на тему «Грандиозные вызовы в области искусственного интеллекта», который привёл к дискуссиям об использовании футбола для продвижения науки и технологий. Год спустя запустили проект Robot J-League, и вскоре последовал глобальный ажиотаж. Так возникли международные соревнования — Чемпионат мира по футболу среди роботов RoboCup.
Итак, особенность проекта заключается как раз в естественных, трудных условиях для Driblebot. Что касается аппаратной части, робот оснащён набором датчиков, которые позволяют ему воспринимать окружающую среду, чувствовать, где он находится, «понимать» своё положение и «видеть» окрестности. Набор приводов позволяют машине прикладывать усилия и перемещать себя и объекты. В системе наряду с датчиками и механизмами действует компьютер, чтобы преобразовывать данные в действия. Когда робот бежит по снегу, он может чувствовать его с помощью моторных датчиков. Но футбол — более сложная задача, чем ходьба, поэтому команда использовала камеры на голове и туловище робота для новой сенсорной модальности зрения в дополнение к новому двигательному навыку.
И учёным ещё есть, к чему стремиться: Driblebot пока не обучен условиям на склонах и лестницах. Робот не воспринимает геометрию местности; он только оценивает свойства контакта с материалом, такие как трение. Например, если есть ступенька вверх, робот застрянет. Он не сможет поднять мяч над ступенькой — это область, которую авторы проекта исследуют в будущем.
Исследователи затем применят выводы, полученные в ходе разработки Dribblebot, к другим задачам: комбинированное передвижение и манипулирование объектами, быстрая транспортировка различных объектов с места на место с помощью ног или «рук».
Сторонний эксперт по ИИ Викаш Кумар отметил, что в Dribblebot впечатляет, как сенсомоторные навыки синтезируются в режиме реального времени в недорогой системе с использованием встроенных вычислительных ресурсов. В общем, система демонстрирует замечательную ловкость и координацию.
- Дмитрий Ладыгин
- youtu.be/bV4ek-zI3CU
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

«Инопланетяне» на Земле? Древние 8-метровые «грибы» оказались совершенно неизвестной формой жизни
Вот уже 180 лет подряд живые «башни» ставят в тупик всю науку....

«Шерстистый дьявол» обнаружен в пустыне, на границе Мексики и США
Ученые говорят: такой уникальной находки не было последние полвека....

Скрытые миллиарды: население Земли оказалось гораздо больше, чем считалось
Новые исследования бросают вызов официальным демографическим данным....

Американские спецслужбы скрывают правду о самой древней из библейских реликвий?
Экстрасенс ЦРУ предупредил: Ковчег Завета убьет каждого, кто к нему прикоснется....

Похоже, что проблема космического мусора в скором времени будет решена раз и навсегда
Новая технология не только очистит космос, но и поможет спутникам работать втрое дольше....

Почему мы не помним себя младенцами? Новое исследование дало ответы
Возможно, помним, но «ларчик» заперт....

Археологи ликуют: в Испании нашли рисунки, которые старше человечества!
200 000-летняя находка заставит пересмотреть учебники....

iPhone, давай до свидания! Илон Маск презентовал инновационный смартфон PhoneX
Это устройство слишком прекрасно для нашей реальности....

Ученые рассказали и показали, как выглядит Антарктида без льда
Высокие горы, глубочайшие каньоны, 58 метров до Апокалипсиса и множество других тайн....

Самые массовые и дикие розыгрыши на 1 апреля в мировой истории
Это вам не просто «вся спина белая»....

Ученые поражены: мыши, как спасатели, оживляют своих сородичей, попавших в беду
Открытие, от которого дрогнет даже самое черствое сердце....

Кислород устарел! Ученые нашли новый ключ к внеземной жизни
Гицеанические миры могут стать новой надеждой астрофизиков....

На 100 000 лет раньше людей: ученые рассказали, кто устроил первые похороны на планете
Загадочные карлики Homo naledi, чей мозг был размером с апельсин, оказались не глупее нас с вами....

Секретная мутация гена: оказалось, ее имеют все обитатели Марианской впадины
Поразительное открытие китайских ученых может изменить всю теорию эволюции....

10 лет за 48 часов: ИИ полностью переиграл ученых в поисках секрета супербактерий
Однако эксперты предупреждают: нейросети не только ускоряют науку, они запросто могут столкнуть нас в пропасть....

Ученый рассказал, как использовались загадочные артефакты из гробницы Тутанхамона
Это было как в фильме «Мумия»: «Фараон должен воскреснуть!»...