Останавливает сверхзвук: Броня нового типа создана на основе белка
Исследователи создали синтетический биоматериал, который умеет останавливать сверхзвуковые удары. У него может быть множество практических применений, например, пуленепробиваемая броня следующего поколения. Новый материал способен произвести революцию как в оборонной, так и в космической отраслях. Открытие сделала команда из Кентского университета под руководством профессоров Бена Гулта и Джен Хискок.
Семейство материалов на основе белка, получившее название TSAM (Talin Shock Absorbing Materials), представляет собой первый известный пример SynBio (или синтетической биологии), способный поглощать удары сверхзвуковых снарядов. Это отличная возможность для разработки пуленепробиваемой брони следующего поколения и материалов для захвата частиц, позволяющих изучать высокоскоростные столкновения объектов в космосе и верхних слоях атмосферы.
— профессор Бен Гулт.
Команда продемонстрировала реальное применение TSAM, подвергнув гидрогелевый материал сверхзвуковой бомбардировке со скоростью 1,5 км/с — превышающей скорость, с которой частицы в космосе сталкиваются с объектами (обычно > 1 км/с) и начальную скорость огнестрельного оружия, которая обычно составляет от 0,4 до 1,0 км/с. TSAM может не только поглощать удары базальтовых частиц (~ 60 мкм в диаметре) и более крупных кусков алюминиевой шрапнели, но и удерживать эти снаряды после удара.
Современные бронежилеты, как правило, состоят из керамического лицевого слоя, покрытого армированным волокном композитом, тяжелым и громоздким. Кроме того, хотя эта броня эффективно задерживает пули и осколки, она не блокирует кинетическую энергию, что может привести к травме за броней. Кроме того, такой тип брони необратимо повреждается после удара из-за нарушения структурной целостности, что препятствует дальнейшему использованию. Это делает включение TSAM в новые конструкции бронезащиты альтернативой традиционным технологиям, обеспечивая более легкую и долговечную броню, которая защищает владельца от более широкого спектра травм, в том числе вызванных ударом.
Кроме того, способность TSAM захватывать снаряды после удара делает их применимыми в аэрокосмическом секторе, где есть потребность в рассеивающих энергию материалах, позволяющих эффективно собирать космический мусор, космическую пыль и микрометеориты для дальнейшего использования. Кроме того, захваченные частицы облегчают проектирование аэрокосмического оборудования, повышая безопасность космонавтов и продлевая срок службы дорогостоящего аэрокосмического оборудования. Здесь TSAM могут стать альтернативой стандартным аэрогелям, которые могут расплавиться из-за повышения температуры в результате столкновения.
Семейство материалов на основе белка, получившее название TSAM (Talin Shock Absorbing Materials), представляет собой первый известный пример SynBio (или синтетической биологии), способный поглощать удары сверхзвуковых снарядов. Это отличная возможность для разработки пуленепробиваемой брони следующего поколения и материалов для захвата частиц, позволяющих изучать высокоскоростные столкновения объектов в космосе и верхних слоях атмосферы.
Работа над белком талином, который является естественным амортизатором клеток, показала, что эта молекула содержит серию бинарных доменов-переключателей, которые открываются при воздействии силы и снова восстанавливаются, когда воздействие убирают. Эта реакция придает талину его молекулярные амортизирующие свойства, защищая наши клетки от неблагоприятных воздействий. Когда мы полимеризовали талин в TSAM, мы обнаружили, что амортизирующие свойства мономеров талина придают материалу невероятные свойства
— профессор Бен Гулт.
Команда продемонстрировала реальное применение TSAM, подвергнув гидрогелевый материал сверхзвуковой бомбардировке со скоростью 1,5 км/с — превышающей скорость, с которой частицы в космосе сталкиваются с объектами (обычно > 1 км/с) и начальную скорость огнестрельного оружия, которая обычно составляет от 0,4 до 1,0 км/с. TSAM может не только поглощать удары базальтовых частиц (~ 60 мкм в диаметре) и более крупных кусков алюминиевой шрапнели, но и удерживать эти снаряды после удара.
Современные бронежилеты, как правило, состоят из керамического лицевого слоя, покрытого армированным волокном композитом, тяжелым и громоздким. Кроме того, хотя эта броня эффективно задерживает пули и осколки, она не блокирует кинетическую энергию, что может привести к травме за броней. Кроме того, такой тип брони необратимо повреждается после удара из-за нарушения структурной целостности, что препятствует дальнейшему использованию. Это делает включение TSAM в новые конструкции бронезащиты альтернативой традиционным технологиям, обеспечивая более легкую и долговечную броню, которая защищает владельца от более широкого спектра травм, в том числе вызванных ударом.
Кроме того, способность TSAM захватывать снаряды после удара делает их применимыми в аэрокосмическом секторе, где есть потребность в рассеивающих энергию материалах, позволяющих эффективно собирать космический мусор, космическую пыль и микрометеориты для дальнейшего использования. Кроме того, захваченные частицы облегчают проектирование аэрокосмического оборудования, повышая безопасность космонавтов и продлевая срок службы дорогостоящего аэрокосмического оборудования. Здесь TSAM могут стать альтернативой стандартным аэрогелям, которые могут расплавиться из-за повышения температуры в результате столкновения.
- Евгения Бусина
- scitechdaily.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Секрет 14-го моря России: куда оно пропало и почему о нем снова заговорили?
Эксперты напоминают: Кроме Печорского, у России есть и 15-е «забытое» море, и оно тоже возвращается на карты...
Главная тайна Черного моря разгадана: Ученые рассказали, почему там на дне очень прозрачная пресная вода
Чтобы найти ответ, исследователям пришлось заглянуть на 8 тысяч лет назад...
Золотой колокольчик из Эрмитажа: почему Владимир Путин запретил выставлять этот артефакт за границей?
Сколько сокровищ потеряла Россия в последнее время, пока не поняла, что договоры с Западом не стоят даже бумаги, на которой написаны?...
Мегамонстры с 7-го этажа: в древних океанах шла такая война хищников, где у современных косаток не было бы ни единого шанса
Ученые рассказали, куда исчезли «боги» мезозойских морей и почему сейчас их существование было бы невозможно...
Мощнее леса в десятки раз: в ЮАР нашли «живые камни», которые выкачивают CO₂ с бешеной скоростью
Микробиалиты могли бы спасти Землю от потепления, но у этих «каменных насосов» есть один нюанс...
3500-летние рисунки на камнях российского острова Вайгач грозят переписать древнюю историю Арктики
Ученые рассказали, кем были мореходы из забытой цивилизации Русского Севера...
Грядет научный прорыв: Зачем в последние годы ученые по всему миру создают очень странные компьютеры?
Новые аппараты… не просто живые: они стирают различия между ЭВМ и человеческим мозгом...
20-летнее наблюдение со спутников «сломало климат»: Теперь ученым придется полностью менять все теории
Зато теперь понятно, почему в двух близких городах могут быть... разные времена года...
Ученые рассказали, какой фрукт подчинил себе весь Китай
Как продукт с очень специфическим запахом стал управлять дипломатией и экономикой Юго-Восточной Азии?...
Она нам больше не праматерь! Почему легендарную Люси могут «изгнать» из числа наших предков?
Ведущие антропологи мира схлестнулись в настоящей войне. Кто же окажется победителем?...
Американский авиалайнер резко рухнул на 7000 метров: эксперты считают виновником сбоя космические лучи из глубин Галактики
В этот раз катастрофа не произошла, но под угрозой электроника самолетов, космических аппаратов и даже автомобилей. Почему так происходит?...
Забытые истории: где искать потерянные русские города?
Последний языческий город, почему Тмутаракань — головная боль археологов и что не так со Старой Рязанью...