
Сверхэффективный транзистор сокращает энергопотребление при использовании машинного обучения на 99%
Исследователи Северо-Западного университета разработали новое наноэлектронное устройство, которое может революционизировать область машинного обучения и искусственного интеллекта. Они представили свое открытие в статье, опубликованной в журнале Природа.
Главная проблема, с которой сталкиваются разработчики ИИ, заключается в необходимости использовать огромные вычислительные ресурсы, доступные в облаке. Однако новый микротранзистор, созданный исследователями, обещает изменить эту ситуацию. Он на 100X более эффективен по сравнению с существующими технологиями, что открывает новые возможности для применения искусственного интеллекта на мобильных и носимых устройствах.
Основное предназначение нового устройства — выполнение задач классификации. Эта задача является основой для многих систем машинного обучения и заключается в анализе больших объемов данных и выделении значимых битов. Если раньше для ее решения требовались огромные вычислительные мощности, то теперь благодаря новому микротранзистору она станет доступной и эффективной даже на мобильных и носимых устройствах.
— Марк Герсам, старший автор исследования.
В отличие от традиционных кремниевых транзисторов, новые транзисторы строятся из двумерных листов дисульфида молибдена и одномерных углеродных нанотрубок. Это позволяет им обладать уникальными свойствами.
Одно из главных преимуществ новых транзисторов заключается в их способности быстро настраиваться и перенастраиваться на лету. Это означает, что они могут использоваться для выполнения нескольких шагов в цепочке обработки данных, в то время как традиционные транзисторы могут выполнять только один шаг за раз.
Такая гибкость очень важна для систем машинного обучения, которые часто требуют множества итераций и перенастройки параметров для достижения оптимальных результатов. Новые транзисторы предоставляют возможность более эффективной обработки данных и адаптации к изменяющимся условиям.
Кроме того, использование двумерных листов и одномерных нанотрубок при построении транзисторов позволяет сократить их размер до нанометровых масштабов. Это открывает новые возможности для создания компактных и энергоэффективных устройств, включая мобильные и носимые устройства.
Таким образом, новые транзисторы из дисульфида молибдена и углеродных нанотрубок представляют собой перспективное направление развития в области электроники. Они обладают уникальными свойствами, которые могут существенно улучшить производительность и эффективность систем машинного обучения и искусственного интеллекта.
— Марк Герсам.
В процессе тестирования этих микроскопических ядер гетеропереходных транзисторов исследователи обучили их анализировать общедоступные наборы данных ЭКГ и классифицировать шесть различных типов сердцебиений: нормальные, предсердные преждевременные сокращения, преждевременные сокращения желудочков, пасмообразные удары, удары ветки левой связки и удары ветки правой связки. Это важные факторы для диагностики сердечных заболеваний и мониторинга сердечной активности.
Использование новых транзисторов позволяет достичь высокой точности и эффективности в классификации сердечных аритмий. Такой подход обещает улучшить возможности диагностики и лечения сердечных заболеваний, а также снизить затраты и энергопотребление систем мониторинга сердца.
В ходе исследования исследователи протестировали новые микротранзисторы на наборе из 10 000 образцов ЭКГ и достигли точности классификации аномальных сердцебиений на уровне 95%. При этом использовалось всего два из этих микротранзисторов вместо более 100 традиционных транзисторов, которые обычно требуются для такой задачи. Более того, эти новые микротранзисторы использовали только около 1% энергии, что делает их очень энергоэффективными.
Эти результаты имеют большое значение для будущего ИИ в машинном обучении. Когда эта технология будет готова к производству, мобильные устройства с батарейным питанием смогут использовать свои собственные датчики данных для запуска ИИ-моделей машинного обучения. Это означает, что классификация и анализ данных будет происходить на самом устройстве, что сократит время получения результатов и значительно повысит приватность и безопасность персональных данных.
Однако, пока неясно, какую роль эта технология сможет играть не только в портативных устройствах, но и в обработке видеоданных или применении в более крупных системах машинного обучения и ИИ. Если бы энергопотребление могло быть снижено в сто раз, это было бы огромным прорывом для обучения больших моделей и значительно расширило бы применимость машинного обучения.
Несмотря на то, что перспективы этой новой технологии остаются некоторым образом неопределенными, она уже демонстрирует потенциал для эффективного использования ИИ в различных областях, от медицины до информационной безопасности. Это открывает новые горизонты для применения интеллектуальных систем в повседневной жизни людей.
Главная проблема, с которой сталкиваются разработчики ИИ, заключается в необходимости использовать огромные вычислительные ресурсы, доступные в облаке. Однако новый микротранзистор, созданный исследователями, обещает изменить эту ситуацию. Он на 100X более эффективен по сравнению с существующими технологиями, что открывает новые возможности для применения искусственного интеллекта на мобильных и носимых устройствах.
Основное предназначение нового устройства — выполнение задач классификации. Эта задача является основой для многих систем машинного обучения и заключается в анализе больших объемов данных и выделении значимых битов. Если раньше для ее решения требовались огромные вычислительные мощности, то теперь благодаря новому микротранзистору она станет доступной и эффективной даже на мобильных и носимых устройствах.
Сегодня большинство датчиков собирают данные, а затем отправляют их в облако, где анализ происходит на энергоемких серверах, прежде чем результаты наконец будут отправлены обратно пользователю. Этот подход невероятно дорог, потребляет значительную энергию и добавляет задержку во времени. Наше устройство настолько энергоэффективно, что его можно развернуть непосредственно в носимой электронике для обнаружения и обработки данных в режиме реального времени, что позволяет более быстро реагировать на чрезвычайные ситуации в области здравоохранения
— Марк Герсам, старший автор исследования.
В отличие от традиционных кремниевых транзисторов, новые транзисторы строятся из двумерных листов дисульфида молибдена и одномерных углеродных нанотрубок. Это позволяет им обладать уникальными свойствами.
Одно из главных преимуществ новых транзисторов заключается в их способности быстро настраиваться и перенастраиваться на лету. Это означает, что они могут использоваться для выполнения нескольких шагов в цепочке обработки данных, в то время как традиционные транзисторы могут выполнять только один шаг за раз.
Такая гибкость очень важна для систем машинного обучения, которые часто требуют множества итераций и перенастройки параметров для достижения оптимальных результатов. Новые транзисторы предоставляют возможность более эффективной обработки данных и адаптации к изменяющимся условиям.
Кроме того, использование двумерных листов и одномерных нанотрубок при построении транзисторов позволяет сократить их размер до нанометровых масштабов. Это открывает новые возможности для создания компактных и энергоэффективных устройств, включая мобильные и носимые устройства.
Таким образом, новые транзисторы из дисульфида молибдена и углеродных нанотрубок представляют собой перспективное направление развития в области электроники. Они обладают уникальными свойствами, которые могут существенно улучшить производительность и эффективность систем машинного обучения и искусственного интеллекта.
Интеграция двух различных материалов в одно устройство предоставляет возможность модулировать текущий поток с использованием приложенных напряжений. Это обеспечивает динамическую реконфигуруемость и высокую степень перестраиваемости в одном устройстве. Благодаря этим свойствам мы можем выполнять сложные алгоритмы классификации с небольшим затратами и низким энергопотреблением
— Марк Герсам.
В процессе тестирования этих микроскопических ядер гетеропереходных транзисторов исследователи обучили их анализировать общедоступные наборы данных ЭКГ и классифицировать шесть различных типов сердцебиений: нормальные, предсердные преждевременные сокращения, преждевременные сокращения желудочков, пасмообразные удары, удары ветки левой связки и удары ветки правой связки. Это важные факторы для диагностики сердечных заболеваний и мониторинга сердечной активности.
Использование новых транзисторов позволяет достичь высокой точности и эффективности в классификации сердечных аритмий. Такой подход обещает улучшить возможности диагностики и лечения сердечных заболеваний, а также снизить затраты и энергопотребление систем мониторинга сердца.
В ходе исследования исследователи протестировали новые микротранзисторы на наборе из 10 000 образцов ЭКГ и достигли точности классификации аномальных сердцебиений на уровне 95%. При этом использовалось всего два из этих микротранзисторов вместо более 100 традиционных транзисторов, которые обычно требуются для такой задачи. Более того, эти новые микротранзисторы использовали только около 1% энергии, что делает их очень энергоэффективными.
Эти результаты имеют большое значение для будущего ИИ в машинном обучении. Когда эта технология будет готова к производству, мобильные устройства с батарейным питанием смогут использовать свои собственные датчики данных для запуска ИИ-моделей машинного обучения. Это означает, что классификация и анализ данных будет происходить на самом устройстве, что сократит время получения результатов и значительно повысит приватность и безопасность персональных данных.
Однако, пока неясно, какую роль эта технология сможет играть не только в портативных устройствах, но и в обработке видеоданных или применении в более крупных системах машинного обучения и ИИ. Если бы энергопотребление могло быть снижено в сто раз, это было бы огромным прорывом для обучения больших моделей и значительно расширило бы применимость машинного обучения.
Несмотря на то, что перспективы этой новой технологии остаются некоторым образом неопределенными, она уже демонстрирует потенциал для эффективного использования ИИ в различных областях, от медицины до информационной безопасности. Это открывает новые горизонты для применения интеллектуальных систем в повседневной жизни людей.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

32 удивительных подарка за последние 20 лет: ученые пытаются понять, за что косатки «балуют» людей
Природная доброта? Любопытство? Желание выйти на контакт?...

Найдено идеальное место для жизни на Марсе
По словам ученых, оно похоже… на нашу Сибирь....

Уникальная находка в Нидерландах: археологи обнаружили римский лагерь далеко за пределами Империи
Как лидар и искусственный интеллект нашли объект-«невидимку» II века....

Тайна разгадана: стало известно, почему большинство кошек предпочитают спать строго на одном боку
Оказалось, что это древний защитный механизм, которому миллионы лет....

Эксперты обнаружили существ, переживших прямой удар астероида, который уничтожил динозавров
Почему конец света — это вовсе не повод, чтобы вымирать?...

«Вертолетная» конструкция да Винчи может сделать беспилотники тише, быстрее и даже дешевле
Ученые поражены, насколько разработка Леонардо опередила время....

Ученые хотят создать хранилище микробов, чтобы те… не вымерли
Звучит кошмарно, но на самом деле от этого зависит судьба всего человечества....