
Статистическая значимость: путь к научной славе или ловушка для исследователей?
Статистическая значимость — понятие, которое используется в науке для того, чтобы оценить, насколько вероятно, что полученные результаты не являются случайными или ошибочными. Если результаты статистически значимы, то это означает, что они достаточно надежны и воспроизводимы, и что они могут свидетельствовать о наличии какого-то интересного явления или закономерности. Статистическая значимость часто измеряется с помощью так называемого Р-значения, которое показывает, какова вероятность получить такие же или более экстремальные данные при условии, что никакого эффекта на самом деле нет. Чем меньше Р-значение, тем меньше шансов, что результаты объясняются просто случайностью.
На первый взгляд, статистическая значимость кажется очень полезным и объективным инструментом для проверки гипотез и подтверждения научных открытий. Однако в последние десятилетия все больше ученых обращают внимание на то, что статистическая значимость имеет свои недостатки и подводные камни. Во-первых, статистическая значимость не гарантирует, что результаты имеют практическую или теоретическую ценность. Например, если в эксперименте участвует очень большое количество испытуемых, то даже очень маленькие различия между группами могут оказаться статистически значимыми, но при этом не иметь никакого смысла или влияния на реальную жизнь. Во-вторых, статистическая значимость зависит от выбора уровня значимости (обычно 0.05), который является произвольным и не учитывает специфику каждого исследования. В-третьих, статистическая значимость может быть легко искажена или подделана с помощью различных приемов, таких как выборочное представление данных, манипулирование переменными, игнорирование альтернативных объяснений и т. д.
Все эти проблемы привели к тому, что в научном сообществе возникло явление, которое называется «кризисом воспроизводимости». Это означает, что многие научные результаты, которые были опубликованы в престижных журналах и получили широкую известность, не могут быть повторены другими исследователями при повторении тех же условий эксперимента. Это подрывает доверие к науке и ее авторитет в обществе. Кроме того, это ведет к потере времени и ресурсов, которые могли бы быть использованы для более полезных и качественных исследований.
Одним из первых ученых, который попытался обратить внимание на эту проблему и предложить решение, был Джеффри Лофтус, редактор журнала «Память и познание». В 1993–1997 годах он писал редакционные статьи, в которых критиковал преобладание статистической значимости в психологии и призывал исследователей использовать более простые и наглядные способы представления данных, такие как средние значения, графики и диаграммы. Он также предлагал учитывать не только статистическую, но и клиническую значимость, то есть насколько результаты имеют отношение к реальным ситуациям и проблемам. Лофтус хотел, чтобы психологи больше думали о смысле и интерпретации своих данных, а не о том, как получить желаемое Р-значение.
Лофтус советует использовать более простые и понятные подходы. Например, он предлагает отобразить прямые средние значения для сравнения групп добровольцев в психологическом эксперименте. Графики позволяют видеть, есть ли большой разброс между отдельными участниками исследования или оценки сконцентрированы вокруг среднего значения. Это позволяет исследователям оценить, например, улучшили ли добровольцы свои результаты в сложном математическом тесте, если на самом деле они сначала писали о своих мыслях и чувствах в течение 10 минут, в отличие от простого сидения в течение 10 минут.
Тем не менее, большинство исследователей продолжают акцентировать внимание на статистической значимости своих результатов.
Хотя Лофтус не был единственным, кто высказывал такие мысли, его статьи вызвали большой резонанс в научном мире. Многие согласились с его критикой и поддержали его предложения. Однако многие другие продолжали придерживаться традиционного подхода и считали, что статистическая значимость является необходимым и достаточным условием для научной достоверности. Таким образом, вопрос о том, как правильно проводить и оценивать научные исследования, остается открытым и актуальным до сих пор.
Психолог и прикладной статистик Ричард Мори из Университета Кардиффа, Уэльс, призывает исследователей пересмотреть традиционный подход к статистической значимости. Он предлагает сосредоточиться на разработке теорий ума и поведения, которые дают проверяемые прогнозы. Такой подход позволит ученым выбирать наиболее подходящие статистические инструменты для своих нужд.
— Ричард Мори.
Однако все еще многие исследователи уделяют пристальное внимание статистической значимости в надежде найти истину. Мори выражает надежду, что в будущем подход, основанный на ошибке нулевого ритуала, уступит место новым и более эффективным методам.
На первый взгляд, статистическая значимость кажется очень полезным и объективным инструментом для проверки гипотез и подтверждения научных открытий. Однако в последние десятилетия все больше ученых обращают внимание на то, что статистическая значимость имеет свои недостатки и подводные камни. Во-первых, статистическая значимость не гарантирует, что результаты имеют практическую или теоретическую ценность. Например, если в эксперименте участвует очень большое количество испытуемых, то даже очень маленькие различия между группами могут оказаться статистически значимыми, но при этом не иметь никакого смысла или влияния на реальную жизнь. Во-вторых, статистическая значимость зависит от выбора уровня значимости (обычно 0.05), который является произвольным и не учитывает специфику каждого исследования. В-третьих, статистическая значимость может быть легко искажена или подделана с помощью различных приемов, таких как выборочное представление данных, манипулирование переменными, игнорирование альтернативных объяснений и т. д.
Все эти проблемы привели к тому, что в научном сообществе возникло явление, которое называется «кризисом воспроизводимости». Это означает, что многие научные результаты, которые были опубликованы в престижных журналах и получили широкую известность, не могут быть повторены другими исследователями при повторении тех же условий эксперимента. Это подрывает доверие к науке и ее авторитет в обществе. Кроме того, это ведет к потере времени и ресурсов, которые могли бы быть использованы для более полезных и качественных исследований.
Одним из первых ученых, который попытался обратить внимание на эту проблему и предложить решение, был Джеффри Лофтус, редактор журнала «Память и познание». В 1993–1997 годах он писал редакционные статьи, в которых критиковал преобладание статистической значимости в психологии и призывал исследователей использовать более простые и наглядные способы представления данных, такие как средние значения, графики и диаграммы. Он также предлагал учитывать не только статистическую, но и клиническую значимость, то есть насколько результаты имеют отношение к реальным ситуациям и проблемам. Лофтус хотел, чтобы психологи больше думали о смысле и интерпретации своих данных, а не о том, как получить желаемое Р-значение.
Лофтус советует использовать более простые и понятные подходы. Например, он предлагает отобразить прямые средние значения для сравнения групп добровольцев в психологическом эксперименте. Графики позволяют видеть, есть ли большой разброс между отдельными участниками исследования или оценки сконцентрированы вокруг среднего значения. Это позволяет исследователям оценить, например, улучшили ли добровольцы свои результаты в сложном математическом тесте, если на самом деле они сначала писали о своих мыслях и чувствах в течение 10 минут, в отличие от простого сидения в течение 10 минут.
Тем не менее, большинство исследователей продолжают акцентировать внимание на статистической значимости своих результатов.
Хотя Лофтус не был единственным, кто высказывал такие мысли, его статьи вызвали большой резонанс в научном мире. Многие согласились с его критикой и поддержали его предложения. Однако многие другие продолжали придерживаться традиционного подхода и считали, что статистическая значимость является необходимым и достаточным условием для научной достоверности. Таким образом, вопрос о том, как правильно проводить и оценивать научные исследования, остается открытым и актуальным до сих пор.
Психолог и прикладной статистик Ричард Мори из Университета Кардиффа, Уэльс, призывает исследователей пересмотреть традиционный подход к статистической значимости. Он предлагает сосредоточиться на разработке теорий ума и поведения, которые дают проверяемые прогнозы. Такой подход позволит ученым выбирать наиболее подходящие статистические инструменты для своих нужд.
Статистика помогает нам сомневаться в том, что мы видим
— Ричард Мори.
Однако все еще многие исследователи уделяют пристальное внимание статистической значимости в надежде найти истину. Мори выражает надежду, что в будущем подход, основанный на ошибке нулевого ритуала, уступит место новым и более эффективным методам.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

60 000 лет без розетки: Как пустыня Гоби зарядит весь Китай
Похоже, электричество будет дешевле воздуха....

Стеклянный свидетель катастрофы: что нашли в черепе человека из Геркуланума?
Ученые установили, как мозг превратился в стекло за считаные минуты....

85 миллионов лет в морозильнике: кто вытащил Землю из вечной зимы?
Ученые рассказали, почему ледяной ад пошел планете на пользу....

Археологи краснеют: стало понятно, почему Стоунхендж «встал» на века
Последнее исследование говорит, что в центре комплекса стоял почти 3-метровый фаллос....

Тающие ледники Норвегии открыли очередную порцию древних артефактов
Эксперты говорят: с каждым годом ледниковая археология становится все перспективнее!...

Двухэтажные кресла в корне могут изменить путешествия на самолетах
Почему многие эксперты и пассажиры настроены против этого проекта?...

Когда-то Марс был «пляжной» планетой, похожей на лучшие курорты
Марсоход «Чжужун» обнаружил берег древнего океана. Осталось найти жизнь…...

Посадка «Голубого призрака» на Луну прошла идеально
К тому же она оказалась весьма экономичной....

Самые мощные космические лучи во Вселенной потребуют переписать законы физики
Поразительное открытие было сделано недавно в России....

Вулкан поднимает древнеримский «Лас-Вегас» из итальянского озера
Уникальная вилла вышла наружу....

Skype доживает последние дни: в мае 2025 года Microsoft отключит его на Windows
Почему легендарный мессенджер был обречен уже много лет назад?...

Зато шерстистая: проект по возрождению мамонта создал… мышь
Учёные генетически сконструировали особенных грызунов. Но зачем?...

33 миллиона тонн льда в час: Гренландия тает быстрее, чем прогнозировалось
Новое исследование раскрыло сроки «переломного момента» для северных ледников....

Телепатия для всех? Ученые нашли способ «включить» скрытые способности мозга
Канадские исследователи разблокировали экстрасенсорику с помощью магнитных импульсов....

Истинная сверхсамка: крупнейший в мире клон нашли в Балтийском море
Простирается на 500 км....

Кот Шредингера, который гуляет сам по себе... и спасает квантовые технологии
История о том, как «кошачьи» кубиты от Amazon могут изменить будущее технологий без лишнего пафоса....